Sustainable use of resources
- Long term and short term
- In particular the Kvarken region and the forest sector!
 
 
 

by Peter Lohmander
www.Lohmander.com
 
 
 
 
 
 
 
 
 
 

Time scale: Long term
Spatial scale: Very local
Continuous cover forestry

+ Good protection in some areas
- Expensive harvests in case the harvest per occasion is small
 
 
 
 
 
 
 
 
 

Time scale: Long term
Spatial scale: Forest area or larger
Rotation forestry
+ Cheap harvests and a continuous flow of roundwood from the area
- Damages in some areas
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Time scale: Long term
Spatial scale: Forest area or larger
Continuous cover forestry
+ Good protection in some areas
- Expensive harvests in case the harvest per occasion is small
 
 
 
 
 
 
 
 
 
 
 
 
 

Time scale = 1 year
Spatial scale = Region
Harvesting, roundwood transport, stocks, forest industry mills, Infrastructure, Random weather conditions
 
 
 
 
 
 
 

Random weather: Click here!

Sequential information: Click here!
 
 
 
 
 
 
 
 
 
 

Sample problem (Norra Norrland):
 
 

! AdaptTP6.lng;
! Peter Lohmander Version 2002-02-12;
 
 
 
 
 
 
 

! "Adaptive forest sector harvesting, logistics and management".
 
 
 
 
 
 

The objective is to minimize the expected present value of the
total cost (including costs of harvesting, transport and stocks)
during one year.
 
 
 
 
 
 
 

The developments of snow, rain and road problems are not known in advance. The information concerning these matters is sequentially revealed, exactly as in the real world.
 
 
 
 
 
 
 
 

The forest harvesting volume constraints, the sequentially revealed
road capacity constraints and the stock level constraints however have
to be met, irrespective of what happens.
 
 
 
 
 
 
 
 

The wood deliveries necessary for full industrial production in   different periods have to reach the forest industry mills.
 
 
 
 
 
 
 

In a more complete version of this model, one could maximize the   expected present value of all activities in the firm, making it
possible to stop industrial production in some cases.
 
 
 
 
 
 
 
 
 
 
 

Of course, one could easily include harvester and forwarder capacity constraints.
 
 
 
 
 
 
 
 

Other developments would be to introduce quadratic harvesting and
transport cost functions with increasing marginal costs in each   period.
 
 
 
 
 
 
 
 

The model would then still converge to the global optimum in a finite number of iterations and the number of dimensions could be very large, thanks to the efficient quadratic programming algorithms.
 
 
 
 
 
 
 
 
 
 

  www.Lohmander.com

  ;

MODEL:
 
 
 
 
 
 
 
 
 

! These parameters roughly represent the region "Norra Norrland", the two counties in the far north in Sweden.
 
 
 
 
 
 
 
 
 
 

  The units are "1000 cubic metres".;

htot = 12010;
D1 = 3000;
D2 = 2000;
D3 = 7000;
Lsec = 1000;

min = TCOST;
 
 
 
 
 
 
 
 
 
 

TCOST = TCh + TCSI + TCSL + TCLI + TCSTO;
 
 
 
 
 
 
 
 
 
 
 

TCh = 70*h1
       + 70*0.98*(1/3)*
         (h11  + h12  + h13)
       + 70*0.96*(1/9)*
      (   h111 + h112 + h113
       +  h121 + h122 + h123
       +  h131 + h132 + h133);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TCSI = 50*TSI1

       + 0.98*(1/3)*
         (50*TSI11  + 52*TSI12  + 54*TSI13)

       + 0.96*(1/9)*
      (   50*TSI111 + 52*TSI112 + 54*TSI113
       +  50*TSI121 + 52*TSI122 + 55*TSI123
       +  51*TSI131 + 53*TSI132 + 56*TSI133);
 
 
 
 
 
 
 
 
 
 
 
 

TCSL = 40*TSL1

      + 0.98*(1/3)*
      (   40*TSL11+42*TSL12+44*TSL13)

      + 0.96*(1/9)*
      (   40*TSL111 + 42*TSL112 + 44*TSL113
       +  40*TSL121 + 42*TSL122 + 45*TSL123
       +  41*TSL131 + 43*TSL132 + 46*TSL133);
 
 
 
 
 
 
 
 
 
 

TCLI = 30*TLI1
       + 30*0.98*(1/3)*
         (TLI11  + TLI12  + TLI13)
       + 30*0.96*(1/9)*
      (   TLI111 + TLI112 + TLI113
       +  TLI121 + TLI122 + TLI123
       +  TLI131 + TLI132 + TLI133);
 
 
 
 
 
 
 
 
 

TCSTO = 40*(Lsec + L1ut1)/2
      + 40*0.98*(1/3)*(
            (L1ut1 + L2ut11)/2
          + (L1ut1 + L2ut12)/2
          + (L1ut1 + L2ut13)/2)
      + 60*0.96*(1/3)*(
            (L2ut11 + Lsec)/2
          + (L2ut12 + Lsec)/2
          + (L2ut13 + Lsec)/2);
 
 
 
 
 
 
 
 

L1ut1  = Lsec  + TSL1  - TLI1;
L2ut11 = L1ut1 + TSL11 - TLI11;
L2ut12 = L1ut1 + TSL12 - TLI12;
L2ut13 = L1ut1 + TSL13 - TLI13;
 
 
 
 
 
 
 
 
 
 
 
 

! In period 1, the state is 1 and we harvest h1.
 
 
 
 
 
 
 

In period 2, the state will be 1, 2 or 3
(we do not know that state in advance) and we harvest h11, h12 or h13 depending on which state we come to.
 
 
 
 
 
 
 
 
 

In period 3, we come to a state which is not yet known, namely 1, 2 or 3.

Depending on the (at that point in time known) state path,
111, 112, 113, 121, 122, 123, 131, 132 or 133, we harvest hijk
(where i is the state in the first period, j in the second and k in the
third period.);
 
 
 
 
 
 

! Harvest volume constraints;

h1 + h11 + h111 < htot;
h1 + h11 + h112 < htot;
h1 + h11 + h113 < htot;

h1 + h12 + h121 < htot;
h1 + h12 + h122 < htot;
h1 + h12 + h123 < htot;

h1 + h13 + h131 < htot;
h1 + h13 + h132 < htot;
h1 + h13 + h133 < htot;
 
 
 
 
 
 
 
 

! The roundwood volumes sent from the forest to the mill and/or to the stock can not exceed the harvest. This must be true for each period and scenario.;

[hcon1] TSI1 + TSL1 < h1;

[hcon11] TSI11 + TSL11 < h11;
[hcon12] TSI12 + TSL12 < h12;
[hcon13] TSI13 + TSL13 < h13;

[hcon111] TSI111 + TSL111 < h111;
[hcon112] TSI112 + TSL112 < h112;
[hcon113] TSI113 + TSL113 < h113;

[hcon121] TSI121 + TSL121 < h121;
[hcon122] TSI122 + TSL122 < h122;
[hcon123] TSI123 + TSL123 < h123;

[hcon131] TSI131 + TSL131 < h131;
[hcon132] TSI132 + TSL132 < h132;
[hcon133] TSI133 + TSL133 < h133;
 
 
 
 
 
 
 
 

! The roundwood volume sent from the stock to the mill can not exceed the final volume in that stock in the  earlier period. This must be true for each period and scenario.

(These constraints are not necessary. Other constraints in this model make sure that these constraints are not violated. These constraints are included just to make it possible for the user to investigate the option to take extra volumes from the security stock in critical situations.);

[Lcon1] TLI1 < Lsec;

[Lcon11] TLI11 < Lsec + TSL1 - TLI1;
[Lcon12] TLI12 < Lsec + TSL1 - TLI1;
[Lcon13] TLI13 < Lsec + TSL1 - TLI1;

[Lcon111] TLI111 < Lsec + TSL1 + TSL11 - TLI1 - TLI11;
[Lcon112] TLI112 < Lsec + TSL1 + TSL11 - TLI1 - TLI11;
[Lcon113] TLI113 < Lsec + TSL1 + TSL11 - TLI1 - TLI11;

[Lcon121] TLI121 < Lsec + TSL1 + TSL12 - TLI1 - TLI12;
[Lcon122] TLI122 < Lsec + TSL1 + TSL12 - TLI1 - TLI12;
[Lcon123] TLI123 < Lsec + TSL1 + TSL12 - TLI1 - TLI12;

[Lcon131] TLI131 < Lsec + TSL1 + TSL13 - TLI1 - TLI13;
[Lcon132] TLI132 < Lsec + TSL1 + TSL13 - TLI1 - TLI13;
[Lcon133] TLI133 < Lsec + TSL1 + TSL13 - TLI1 - TLI13;
 
 
 
 
 

! The roundwood volumes transported on the roads are, if some road quality scenarios occur, constrained.;

[Rcon1] TSI1 + TSL1 < 8000;

[Rcon11] TSI11 + TSL11 < 4000;
[Rcon12] TSI12 + TSL12 < 1500;
[Rcon13] TSI13 + TSL13 <  500;

[Rcon111] TSI111 + TSL111 < 10000;
[Rcon112] TSI112 + TSL112 < 9000;
[Rcon113] TSI113 + TSL113 < 7000;

[Rcon121] TSI121 + TSL121 < 9000;
[Rcon122] TSI122 + TSL122 < 8000;
[Rcon123] TSI123 + TSL123 < 6000;

[Rcon131] TSI131 + TSL131 < 8000;
[Rcon132] TSI132 + TSL132 < 7000;
[Rcon133] TSI133 + TSL133 < 5000;
 
 
 
 
 
 
 
 
 

! The roundwood volumes going to the mill must be correct in every period, irrespective of the scenario.;

[D1d]   TSI1 + TLI1 = D1;

[D11d]  TSI11 + TLI11 = D2;
[D12d]  TSI12 + TLI12 = D2;
[D13d]  TSI13 + TLI13 = D2;

[D111d] TSI111 + TLI111 = D3;
[D112d] TSI112 + TLI112 = D3;
[D113d] TSI113 + TLI113 = D3;

[D121d] TSI121 + TLI121 = D3;
[D122d] TSI122 + TLI122 = D3;
[D123d] TSI123 + TLI123 = D3;

[D131d] TSI131 + TLI131 = D3;
[D132d] TSI132 + TLI132 = D3;
[D133d] TSI133 + TLI133 = D3;
 
 
 
 
 
 
 
 

! The roundwood volumes in the stock must be positive in every period, irrespective of the scenario.;

[L1]Lsec + TSL1 - TLI1 > 0;

[L11]Lsec + TSL1 + TSL11 - TLI1 - TLI11 > 0;
[L12]Lsec + TSL1 + TSL12 - TLI1 - TLI12 > 0;
[L13]Lsec + TSL1 + TSL13 - TLI1 - TLI13 > 0;

[L111]Lsec + TSL1 + TSL11 + TSL111 - TLI1 - TLI11 - TLI111 = Lsec;
[L112]Lsec + TSL1 + TSL11 + TSL112 - TLI1 - TLI11 - TLI112 = Lsec;
[L113]Lsec + TSL1 + TSL11 + TSL113 - TLI1 - TLI11 - TLI113 = Lsec;

[L121]Lsec + TSL1 + TSL12 + TSL121 - TLI1 - TLI12 - TLI121 = Lsec;
[L122]Lsec + TSL1 + TSL12 + TSL122 - TLI1 - TLI12 - TLI122 = Lsec;
[L123]Lsec + TSL1 + TSL12 + TSL123 - TLI1 - TLI12 - TLI123 = Lsec;

[L131]Lsec + TSL1 + TSL13 + TSL131 - TLI1 - TLI13 - TLI131 = Lsec;
[L132]Lsec + TSL1 + TSL13 + TSL132 - TLI1 - TLI13 - TLI132 = Lsec;
[L133]Lsec + TSL1 + TSL13 + TSL133 - TLI1 - TLI13 - TLI133 = Lsec;

end
 
 
 
 

Results in graphs: Click here!
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Rows=     85 Vars=     62 No. integer vars=      0  ( all are linear)
 Nonzeros=    378 Constraint nonz=   323(   267 are +- 1) Density=0.071
 Smallest and largest elements in abs value=    1.00000        48800.0
 No. < :  48 No. =:  32 No. > :   4, Obj=MIN, GUBs <=  30
 Single cols=    0

 Global optimal solution found at step:            69
 Objective value:                            1850580.

                       Variable           Value        Reduced Cost

                           HTOT        12010.00           0.0000000
                             D1        3000.000           0.0000000
                             D2        2000.000           0.0000000
                             D3        7000.000           0.0000000
                           LSEC        1000.000           0.0000000
 
 
 
 
 
 
 

                        TCOST        1850580.           0.0000000
                            TCH        824833.3           0.0000000
                           TCSI        427780.0           0.0000000
                           TCSL        140000.0           0.0000000
                           TCLI        101900.0           0.0000000
                          TCSTO        356066.7           0.0000000
 
 
 
 
 
 
 
 

                             H1        6500.000           0.0000000

                            H11       0.0000000           0.0000000
                            H12       0.0000000           0.0000000
                            H13        500.0000           0.0000000

                           H111        5500.000           0.0000000
                           H112        5500.000           0.0000000
                           H113        5500.000           0.0000000

                           H121        5500.000           0.0000000
                           H122        5500.000           0.0000000
                           H123        5500.000           0.0000000

                           H131        5000.000           0.0000000
                           H132        5000.000           0.0000000
                           H133        5000.000           0.0000000
 
 
 

                           TSI1        3000.000           0.0000000

                          TSI11       0.0000000            16.09333
                          TSI12       0.0000000            16.64000
                          TSI13        500.0000           0.0000000

                         TSI111        5500.000           0.0000000
                         TSI112        5500.000           0.0000000
                         TSI113        5500.000           0.0000000

                         TSI121        5500.000           0.0000000
                         TSI122        5500.000           0.0000000
                         TSI123        5500.000           0.0000000

                         TSI131        5000.000           0.0000000
                         TSI132        5000.000           0.0000000
                         TSI133        5000.000           0.0000000
 
 
 
 
 
 

                           TSL1        3500.000           0.0000000

                          TSL11       0.0000000            22.62667
                          TSL12       0.0000000            23.17333
                          TSL13       0.0000000            6.533333

                         TSL111       0.0000000            2.133333
                         TSL112       0.0000000            2.133333
                         TSL113       0.0000000            2.133333

                         TSL121       0.0000000            2.133333
                         TSL122       0.0000000            2.133333
                         TSL123       0.0000000            2.133333

                         TSL131       0.0000000            2.133333
                         TSL132       0.0000000            2.133333
                         TSL133       0.0000000            2.133336
 
 
 
 

                           TLI1       0.0000000            20.00000

                          TLI11        2000.000           0.0000000
                          TLI12        2000.000           0.0000000
                          TLI13        1500.000           0.0000000

                         TLI111        1500.000           0.0000000
                         TLI112        1500.000           0.0000000
                         TLI113        1500.000           0.0000000

                         TLI121        1500.000           0.0000000
                         TLI122        1500.000           0.0000000
                         TLI123        1500.000           0.0000000

                         TLI131        2000.000           0.0000000
                         TLI132        2000.000           0.0000000
                         TLI133        2000.000           0.0000000
 
 
 
 

                          L1UT1        4500.000           0.0000000
                         L2UT11        2500.000           0.0000000
                         L2UT12        2500.000           0.0000000
                         L2UT13        3000.000           0.0000000
 
 
 

                            Row    Slack or Surplus      Dual Price

                          HCON1       0.0000000            70.00000
                         HCON11       0.0000000            22.86667
                         HCON12       0.0000000            22.86667
                         HCON13       0.0000000            22.86667
                        HCON111       0.0000000            7.466667
                        HCON112       0.0000000            7.466667
                        HCON113       0.0000000            7.466667
                        HCON121       0.0000000            7.466667
                        HCON122       0.0000000            7.466667
                        HCON123       0.0000000            7.466667
                        HCON131       0.0000000            7.466667
                        HCON132       0.0000000            7.466667
                        HCON133       0.0000000            7.466667
 
 
 
 
 
 
 

                          LCON1        1000.000           0.0000000
                         LCON11        2500.000           0.0000000
                         LCON12        2500.000           0.0000000
                         LCON13        3000.000           0.0000000
                        LCON111        1000.000           0.0000000
                        LCON112        1000.000           0.0000000
                        LCON113        1000.000           0.0000000
                        LCON121        1000.000           0.0000000
                        LCON122        1000.000           0.0000000
                        LCON123        1000.000           0.0000000
                        LCON131        1000.000           0.0000000
                        LCON132        1000.000           0.0000000
                        LCON133        1000.000           0.0000000

                          RCON1        1500.000           0.0000000
                         RCON11        4000.000           0.0000000
                         RCON12        1500.000           0.0000000
                         RCON13       0.0000000            92.17333
                        RCON111        4500.000           0.0000000
                        RCON112        3500.000           0.0000000
                        RCON113        1500.000           0.0000000
                        RCON121        3500.000           0.0000000
                        RCON122        2500.000           0.0000000
                        RCON123        500.0000           0.0000000
                        RCON131        3000.000           0.0000000
                        RCON132        2000.000           0.0000000
                        RCON133       0.0000000            109.1467

                            D1D       0.0000000           -120.0000
                           D11D       0.0000000           -23.10667
                           D12D       0.0000000           -23.21333
                           D13D       0.0000000           -132.6800
                          D111D       0.0000000           -12.80000
                          D112D       0.0000000           -13.01333
                          D113D       0.0000000           -13.22667
                          D121D       0.0000000           -12.80000
                          D122D       0.0000000           -13.01333
                          D123D       0.0000000           -13.33333
                          D131D       0.0000000           -12.90667
                          D132D       0.0000000           -13.12000
                          D133D       0.0000000           -122.5867

                             L1        4500.000           0.0000000
                            L11        2500.000           0.0000000
                            L12        2500.000           0.0000000
                            L13        3000.000           0.0000000
                           L111       0.0000000           -9.600000
                           L112       0.0000000           -9.813334
                           L113       0.0000000           -10.02667
                           L121       0.0000000           -9.600000
                           L122       0.0000000           -9.813334
                           L123       0.0000000           -10.13333
                           L131       0.0000000           -9.706667
                           L132       0.0000000           -9.920000
                           L133       0.0000000           -119.3867
 
 
 
 

Conclusions:

A. It is possible to optimize the relevant regional forest sector problem:
 

Time scale = 1 year
Spatial scale = Region
Harvesting, roundwood transport, stocks, forest industry mills, Infrastructure, Random weather conditions
 
 
 
 

B. The true sequential structure of information and decisions has been included in the analysis.
 
 
 
 

C. The demonstrated sample model shows how the sequential information and optimal adaptive decisions can be consistently managed in the optimization procedure.
 
 
 
 

D. Complete regional analyses with high resolution data can and should be made.
 
 
 
 
 
 
 
 

E. In order to reach the full potential of the approach, parallell algorithms and/or other super computer approaches should be integrated.
 
 
 
 
 
 
 
 
 

F. Cooperation including the the Kvarken region, Holmen and Mitthögskolan is proposed.
 
 
 
 
 
 

G. Research grants and efficient program administration are needed.
 
 
 
 
 
 
 
 
 
 
 
 
 

www.Lohmander.com

www.sekon.SLU.se/~PLO