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 Abstract 
This paper presents a stochastic optimal control approach to wildlife management. The 

objective value is the present value of hunting and meat, reduced by the present value of the 

costs of plant damages and traffic accidents caused by the wildlife population. First, general 

optimal control functions and value functions are derived. Then, numerically specified optimal 

control functions and value functions of relevance to moose management in Sweden are 

calculated and presented.  
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1.Introduction 

 

This paper starts with a briefing on problem relevant parts of general stochastic optimal control theory, 

continues with the derivation of general function solutions to the optimal wildlife management problem, and 

ends with specific derivations and results of relevance to optimal moose management in Sweden.  

 

2. The General Stochastic Optimal Control Problem 

 

The general optimal stochastic control methodology in continuous time is briefly presented here. Related 

introductions with more details are found in Sethi and Thompson [1], Malliaris and Brock [2] and Winston 

[3]. Lohmander [4] presents connected methods in discrete time. We want to maximize the objective 

function
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 . tX is the state variable, tU is the closed loop control variable and 

tz is a standard Wiener process. 
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0 0( , , ) ( , , ) ,t t t t t tdX f X U t dt G X U t dz X x   . According to the Bellman principle of optimality, we may 

determine the value function ( , )V x t  as the maximum of the sum of the net reward during the first short time 

interval, (.)F dt , and the value function directly after that time interval. 

 ( , ) max ( , , ) ( , )t
u

V x t E F x u t dt V x dX t dt    . A Taylor function approximation gives: 

 
2 2( )

( , ) ( , ) ( )( ) (.)
2 2

xx t tt
t x t t xt t

V dX V dt
V x dX t dt V x t V dX V dt V dX dt           

In the Taylor function, we need:    
2 22 2 22 ( )( ) ( )t t tdX f dt fG dt dz G dz    

and 
2( ) ( )( )t tdX dt f dt G dt dz  . Stochastic calculus tells us: 

2 2( ) 0, ( )( ) 0, ( )t tdt dt dz dz dt   . 

Hence, we get:  
2 2

tdX G dt  and 0tdX dt  . Furthermore, ( ) 0tE dz  . As a result, we get: 
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V x dX t dt V x t V fdt V dt dt        . Hence, the value function is approximately: 
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. Since tV is not a function of u, we obtain the 

”Hamilton-Jacobi-Bellman equation”:  
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 with boundary condition:    , ,V x T S x T . 

 

3. The particular stochastic optimization problem 

 

We want to maximize the expected present value of wildlife management. ( )u u t is the control variable, the 

level of hunting at time t. ( )x x t  is the size of the wildlife population. ( , , )k p f  are objective function 

parameters. The net revenue of the hunting and meat values, 
2ku pu , is a strictly concave function of the 

hunting level. fx , which is proportional to the population level, x , is the cost of destroyed forest plantations 

and cost of traffic accidents caused by the wildlife population. The population growth increases with the size 

of the population and decreases with the hunting level. The magnitudes of the stochastic population changes 

depend on the standard Wiener process, z , the size of the population, and the risk parameter s . r is the rate 

of interest in the capital market. 
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The net profit at a particular point in time is: 
2( , ) ( )R u x ku pu fx   . The ”Hamilton-Jacobi-Bellman 

equation” becomes: 

2 2 ( , )
( , ) ( ( ), ( )) ( , )( ( ) ( ))

2

rt xx
t x

s x J x t
J x t e R u t x t J x t gx t u t    

 

 

Now, the problem is to determine the value function and the control function that satisfy the Hamilton-Jacobi-

Bellman (= HBE) equation. Let us assume that the value function can be expressed this way: 
2( )V x a bx cx   . 

2( ( ), ) ( ) ( )rt rtJ x t t e V x e a bx cx     . Then, these partial derivatives can be 

calculated:  

( ( ), ) ( 2 )rt

xJ x t t e b cx 
 

( ( ), ) (2 )rt

xxJ x t t e c
 

2( ( ), ) ( )rt

tJ x t t re a bx cx    

As a result, we can rewrite the HBE:  

2 2 ( )
( ) ( , ) ( )( )
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xx
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s x V x
rV x R u x V x gx u   

 

2 2 2 21
( ) ( ) 2 ( 2 )( )

2
r a bx cx ku pu fx s x c b cx gx u        

 

We have to optimize the control, u .  

2 2 21
max ( ) ( ) 2 ( 2 )( )

2u
Z u ku pu fx s x c b cx gx u      

 

The first order optimum condition and the second order maximum condition are:  

( )
2 2 0
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du
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The derived value of u is a unique maximum, 
*u . 

*( ) 2
0

2

dZ u k b cx
u u

du p

   
     

   
, 

* * * * 2 2 2 *1
( ) ( ( ) ) 2 ( 2 )( )

2
Z Z u ku p u fx s x c b cx gx u       

 



 

 

 

 

4 

 

* * * 2 2 2 21
( 2 ) ( ) 2 2

2
Z k b cx u p u fx s x c bgx cgx         

Using the optimal values of the control, via the optimized control function, we get: 

2

* 2 2 22 2 1
( 2 ) 2 2

2 2 2

k b cx k b cx
Z k b cx p fx s x c bgx cgx

p p

      
          

   
. The HBE is: 
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Now, we have obtained a quadratic function, that always has to be zero. If the function is not zero, then the 

HBE equation is violated. Since the function must hold for all possible values of x , the size of the population, 

it is clear that we have three equations that can be used to determine the parameters ( , , )a b c . 
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Now, we can use the newly derived function for c in the expression for b . 
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Now, the expression for b can be used in the expression for a . 
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Now, we know the parameters of the value function. They are explicit functions of the parameters in the 

initially specified optimization problem. 

2( )V x a bx cx    

 
2 2

2 2

2 2 2

( ) (2 )
( ) ( 2 )

4 ( )

f k g r k g r s f
V x x p r g s x

pr g s g s

     
     

    



 

 

 

 

6 

 

Now, we will do the same for the optimal control function. What are the control function parameters? 

* 2

2

k b cx
u

p

  
  
   

First, we introduce the functions of b and c  in the expression for 
*u : 
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4. The numerically specified case 

Let us enter the particular numerical parameters of a real problem. Lohmander [5] estimated revenue and cost 

functions and calculated the optimal equilibrium moose population in Sweden, under deterministic 

assumptions and no discounting. The size of the moose population is however not perfectly predictable and 

the capital market often, but not always, includes strictly positive interest rates. Random disturbances can have 

large effects. We may determine the optimal stochastic control of the moose population in Sweden, based on 

the new general functions that have been derived in this paper. The figures and functions presented in 

Lohmander [5] and [6] can be used to derive the parameters of the stochastic control problem. Please note that 

the quadratic objective function in the stochastic optimal control problem of this paper is an approximation of 

the particular objective function presented in [5] and [6]. Both functions are strictly concave. The quadratic 

approximation fits the original function very well within the selected approximation region. Of course, the 

derived general equations can be used also for other animals and in other countries of the world. These 

parameter values were estimated: g = 1/3, k = 600, p = 90, f = 90. Let r = 1/30. In Figure 1. and Figure 2., we 

can inspect the optimal value function and the optimal control function.  
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Figure 1. The optimal total present value function, V(.) as a function of the population density, x, and the 

stochastic parameter s.  

 

 

 

Figure 2. The optimal control, the hunting level, u*, as a function of the population density, x, and the 

stochastic parameter s.  

Figure 1. shows that the optimal value function is a strictly concave function of the size of the population. The 

value is a decreasing function of the stochastic parameter s. The optimal population density, with respect to 
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the value function, is a decreasing function of s. Note that the optimal population density, with respect to the 

value function, is not equal to the optimal population density in the long run. The value may be high with a 

rather high (initial) population, since the control (= hunting level) initially can be high, gradually reducing the 

population to a much lower level. Figure 2. shows the optimal control, the hunting level, as a function of the 

size of the population. Note that the optimal control level is an increasing function of the stochastic parameter 

s.  The intersections of the alternative control functions and the line representing “expected population growth 

without hunting”, show the population levels and the hunting levels where the expected values of the instant 

population changes are zero. Observe that, if s increases, these “expected equilibria” intersections obtain 

lower population densities and lower hunting levels. Since the first derivatives of the alternative control 

functions with respect to x are higher than the first derivative of “the expected population growth without 

hunting”, with respect to x , the ”expected equilibria” are dynamically stable. 

 

5. Conclusions 

This paper has derived and presented a stochastic optimal control approach to wildlife management. 

The objective value is the net present value of hunting and meat, reduced by the present value of the 

costs of plant damages and traffic accidents caused by the wildlife population. General optimal control 

functions and value functions were derived. Then, numerically specified optimal control functions and 

value functions of relevance to moose management in Sweden have been calculated and presented.  
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