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Abstract: A proxy war, between a coalition of countries, BLUE and a country, RED, is considered. 6 

RED wants to increase the size of the RED territory. BLUE wants to involve more regions in trade 7 

and other types of cooperation. GREEN is a small and independent nation that wants to become a 8 

member of BLUE. RED attacks GREEN and tries to invade. BLUE decides to give optimal arms 9 

support to GREEN. This support can help GREEN in the war against RED and simultaneously re- 10 

duce the military power of RED, which is valuable to BLUE, also outside this proxy war, since RED 11 

may confront BLUE also in other regions. The optimal control problem of dynamic arms support, 12 

from the BLUE perspective, is defined in general form. The objective function is a weighted sum of 13 

the present value of the free GREEN territory and the present value to BLUE of the net loss of mili- 14 

tary resources in the RED army. The net loss of RED at a particular point in time is a function of the 15 

location of the front line and the size of the mobile GREEN forces behind the RED line. First, it is 16 

assumed that the expected net loss is proportional to the force ratio behind the red front line. It is 17 

proved that the net loss function is a strictly concave quadratic function of x, the location of the front 18 

line. It is also proved that the unique maximum of the net loss function occurs at the same front 19 

location, also if the net loss function is proportional to the strength ratio behind the RED lines, raised 20 

to any strictly positive exponent. From the BLUE perspective, there is an optimal position of the 21 

front. This position is a function of the weights in the objective function and all other parameters. 22 

Optimal control theory is used to determine the optimal dynamic BLUE strategy, conditional on a 23 

RED strategy, which is observed by BLUE military intelligence. The optimal arms support strategy 24 

for BLUE is to initially send a large volume of arms support to GREEN, to rapidly move the front to 25 

the optimal position. Then, the support should be almost constant during most of the war, keeping 26 

the war front location stationary. In the final part of the conflict, when RED will have almost no 27 

military resources left and tries to retire from the GREEN territory, BLUE should strongly increase 28 

the arms support and make sure that GREEN rapidly can regain the complete territory and end the 29 

war. 30 

Keywords: optimal control theory; military strategy; dynamic game theory 31 

INTRODUCTION 32 

Mathematical modeling of military problems can be done with many alternative an- 33 

alytical and numerical methods. The purpose may be descriptive or normative. In the first 34 

case, the models should predict the future development of a conflict, as a function of initial 35 

conditions and selected strategies. In the later, the purpose is usually to optimize the de- 36 

cisions of one or several decision makers that affect the outcome of the war.   37 

Differential equations are the keys to studies of all kinds of dynamic phenomena. 38 

Braun (1983) is an excellent example, that does not only contain general mathematical 39 

theories and methods but also highly relevant applications, such as war dynamics. Con- 40 

ventional, and conventional-guerilla combat, problems are discussed and analyzed in de- 41 

tail and the dynamics of real second world war battles are described based on differential 42 

equations determined from empirical war data. Fleming and Rishel (1975) give a complete 43 

introduction to deterministic and stochastic optimal control. In this process, they also 44 

cover stochastic differential equations and Markov diffusion processes. Sethi and Thomp- 45 

son (2000) also present optimal control. Many applications to management science and 46 

economics are treated in detail.  47 
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When we have more than one decision maker that affects the outcome of the situation 48 

at hand, we call that game theory. Typically, different participants in a game have differ- 49 

ent objective functions. This is something quite different from optimization with one ob- 50 

jective function. One of the classical books on game theory is Luce and Raiffa (1957). This 51 

does however not handle game dynamics via differential equations. That step was first 52 

taken by Isaacs (1965), who invented the theory of differential games. When there are ex- 53 

actly two players with completely opposite interests and objective functions, we have a 54 

zero-sum game. Then, one player wants to maximize an objective function and the other 55 

player wants to minimize the same objective function. Classical examples of zero-sum 56 

games are Chess, where one player wins if the other loses, and military duels, where one 57 

participant survives if the other dies. In such cases, differential games can be used to de- 58 

termine how the situation develops. Isaacs (1965) does not only invent the methodology, 59 

but also develops and analyzes many combat problems where the new methodology is 60 

useful. The war of attrition and attack, WAA, is one of the central models in the book. 61 

Often, discrete time modeling can make it possible to handle real situations more realisti- 62 

cally. More types of functions can be used when stochastic dynamic programming solu- 63 

tions replace continuous time differential games. Lohmander (2016) and (2018) contain 64 

models that conceptually are generalizations of the WAA model. Lohmander replaces 65 

continuous time by discrete time and makes it possible to include nonlinear functions at 66 

every stage, to describe the outcomes of different decision combinations, and to make it 67 

possible to used mixed strategies at different points in time. With such generalizations, 68 

the optimal dynamic two-person zero sum game strategies can be quite different from the 69 

optimal strategies in differential games. 70 

From a general high level strategic perspective, wars are simply not zero-sum prob- 71 

lems. It is very important to be aware that military conflicts, when we look at them from 72 

a wider perspective, are not zero-sum games. Clearly, in most wars, it is possible for two 73 

armies to increase the total number of survivors, if both armies jointly decide to stop the 74 

war. In the same way, real wars cause very expensive damages. As the war continuous, 75 

more and more houses, roads, bridges etc. are destroyed and civilian people hurt or killed. 76 

All these costs of death and destruction should also be considered in a policy relevant 77 

analysis of the war. Hence, we must accept the fact that zero sum wars are in most cases 78 

simply not relevant descriptions of large conflicts. Nevertheless, within a war, there are 79 

many local battles at lower levels of command. There and then, local officers regularly 80 

face situations that may be viewed as zero-sum games. As a commander of such a local 81 

unit, you often have decision problems where you survive or die, depending on your ac- 82 

tion and the action selected by your enemy.  83 

Washburn (2003) introduces the fundamentals of zero-sum game theory in combina- 84 

tion with applications to tactical military decision problem, typical in the Navy. This ap- 85 

proach is very convincing and motivating, from the perspective of Navy officers. In a sim- 86 

ilar way, Lohmander (2019a) presents very fundamental zero-sum game theory in combi- 87 

nation with solutions to four central and frequent decision problems for army officers, at 88 

platoon, company, and battalion levels. Of course, optimal strategies in such games of 89 

conflict are functions of all parameters in the problems. Such parameters can however not 90 

be exactly known. Lohmander (2019b) determines how parameter estimation errors in 91 

mixed strategy zero-sum game problems affect the optimal strategy frequencies and ex- 92 

pected results. These and recent connected theoretical and applied results in the field of 93 

zero-sum games are presented by Lohmander (2020). 94 

The two-participant zero-sum games are mostly defined with a table, where the rows 95 

and columns represent the possible decisions of the parties. The table shows how much 96 

each participant will gain or lose for each possible combination of decisions. In order to 97 

numerically and/or analytically solve such problems, the common method is to use linear 98 

programming. In many types of problems of conflict, however, the values of the conse- 99 

quences of alternative decisions to the decision makers are nonlinear functions of the de- 100 

cision combinations. Furthermore, a particular decision may be a continuous variable, 101 
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such as the level of arms support, and the consequences of the action are typically func- 102 

tions of time. Partly for this reason, the development of the general theory of optimal con- 103 

trol was in focus, during the cold war period.  Pesch and Plail (2012) describe this devel- 104 

opment by Pontryagin and colleagues at the Steklov institute in USSR, and Hestenes and 105 

others, at RAND corporation, USA. Of course, optimal control is and was not only useful 106 

for military problems. Rocket science and space research are and have been other areas of 107 

application.  108 

Gillispie et al (1977) explicitly used optimal control to study the arms race problem. 109 

They defined national goals as objective functions, based on the arms balance. In the anal- 110 

ysis, they also applied Richardson differential equations and performed equilibrium and 111 

stability analysis. They obtained results of extremely high relevance to world security 112 

such as these: Direct confrontation between USA and the Soviet Union would not lead to 113 

a stable equilibrium. Stable equilibria could however be found if USA and the Soviet Un- 114 

ion acted within NATO and WTO. In the middle east, the Israeli policy could give a stable 115 

equilibrium, which was not the case with the Arab policy.    116 

Optimal control theory has important military applications at many levels. Chen and 117 

Zhang (2014) use optimal control theory to model warfare as a dynamic system where 118 

different kinds of troops meet a homogenous enemy force. Such problems are often de- 119 

noted Hybrid Warfare problems. They also apply dynamic programming and simulation. 120 

In recent years, Unmanned Aerial Vehicles, UAVs, or drones, have become important 121 

tools in the battle fields. Louadj et al (2018), utilizes optimal control theory to optimize the 122 

moves and stability of UAVs, minimizing the distance between the true multidimensional 123 

state and the desired state, at a particular point in time.  124 

Optimal control can, by definition, be used to derive the best possible strategy, in 125 

problems with dynamic consequences. However, the application of optimal control is im- 126 

possible if the objective functions of the decision makers are unknown. This may seem 127 

obvious, but is often forgotten. In most systems with many decision makers, such as the 128 

world market of food, there are extremely many sellers and buyers. If some of these be- 129 

have irrationally, it has very small consequences for the world market prices and trade. In 130 

wars, however, the consequences of war related strategies can be enormous. If national 131 

war strategies are created by some dictator with personal and unknown motives (and ob- 132 

jective functions) and perhaps with an unrealistic view on the real situation and conse- 133 

quences of alternative actions, the world faces a difficult future.  134 

Käihkö (2019) describes that it is unclear how to define the nation Russia and how 135 

and why the Russian strategy is determined. He concludes that, if a good strategy should 136 

be determined, it is necessary to understand these things. It is important for possible op- 137 

ponents to be aware that the Russian strategy may be formulated based on unknown mo- 138 

tives. 139 

In this paper, we will define and analyze a military strategy optimization problem 140 

with three parties, BLUE, GREEN and RED, using optimal control theory. We will moti- 141 

vate and investigate one way, open to BLUE, to reduce the military power of the aggres- 142 

sive power, RED. BLUE will optimize the arms support to GREEN, when RED tries to 143 

invade GREEN, via optimal control theory. Hence, the main conflict really concerns BLUE 144 

and RED, but takes place in the GREEN territory, in the form of a proxy war. The reader 145 

may note that the problem described and analyzed in this paper has similarities to a real 146 

war that strongly influenced Europe during 2022.  147 

 148 

 149 

 150 

 151 

 152 
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MATERIALS AND METHODS 153 

Description of the initial military situation and the decision problem 154 

A proxy war between a coalition of countries, BLUE, and a country, RED, is considered. RED wants to increase the size 155 

of the RED territory and rule more regions. BLUE wants to involve more regions in trade and other types of cooperation. 156 

GREEN is a small and independent nation that wants to become a member of BLUE. RED attacks GREEN and tries to 157 

take control of that country. 158 

The map in Figure 1. shows the territory of country GREEN. The X axes, with direction east, is used to determine the 159 

location of the war front, x, at time t, denoted x(t). In order to simplify the notation, we define the western border from 160 

the condition X = 0 and the eastern border from X = 10. In some parts of the analysis, we use X = K, as a more general 161 

definition of the eastern border.  162 

The war front is illustrated as a dashed line from south to north.  163 

The war starts this way: RED attacks GREEN from the east and rapidly sends combined armor and infantry units along 164 

the roads, in direction west. At time t, the RED units reach the frontline x(t). The area east of the frontline x(t) is not 165 

controlled by RED, since GREEN has several GREEN military units in the area. GREEN can attack RED east of the front 166 

line. GREEN army units have been positioned to secure the area west of x(t). BLUE supports GREEN with ammunition, 167 

combat service support and artillery. This way, GREEN can temporarily stop RED from going further west from x(t). 168 

 169 

Figure 1.The war map of the country GREEN at time t. Explanations are given in the main text. 170 
The frontline x(t) = 6.8. Compare Figure 2., which represents another case, where the frontline at 171 
the same point in time has another location.  172 

 173 

BLUE and RED both have large amounts of nuclear weapons and other weapons of mass destruction. BLUE wants to 174 

avoid using these in order not to start a world war that would completely destroy the territories of BLUE, RED and 175 

most other parts of the planet. BLUE is economically stronger than RED and has more advanced conventional weapons, 176 

artillery with longer shooting ranges, more efficient missiles and antitank weapons. 177 
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BLUE decides not to participate in the war with troops on the ground, in order not to make RED start using nuclear 178 

weapons. However, BLUE decides to give arms support to GREEN. This support can help GREEN in the war against 179 

RED and simultaneously reduce the military power of RED, which is valuable to BLUE, also outside this particular 180 

proxy war, since RED may confront BLUE also in other regions. BLUE demands that the arms support is only used 181 

within the territory of GREEN. 182 

 183 

Briefing on the determination of the optimal strategy 184 

The analysis will contain the following parts: 185 

The optimal dynamic arms support problem, from the BLUE perspective, will be defined in general form.  186 

The objective function is a weighted sum of the present value of the free GREEN territory, west of the front line, and 187 

the present value obtained by BLUE, represented by the net loss of military resources in the RED army, during the war.  188 

The net loss of RED at a particular point in time is a function of the location of the front line and the size of the mobile 189 

GREEN forces east of the front line.  190 

First, it is assumed that the expected RED net loss is proportional to (a particular definition of) the force ratio east of x, 191 

the location of the front line. Then, it is proved that the net loss function is a strictly concave quadratic function of x. It 192 

is also proved that the unique maximum of the expected RED net loss function occurs at the same warfront location, x, 193 

also if the net loss function is proportional to the force ratio raised to some strictly positive exponent plus some constant. 194 

Neither the particular value of the exponent, nor the value of the added constant, influence the value of x that maximizes 195 

the RED net loss function. 196 

The location of the front line is dynamically changing, and determined by a differential equation, influenced by the level 197 

of attack from RED and the level of arms support from BLUE.  198 

Since military analysis has already convinced BLUE that RED has too limited resources and competence to win this 199 

proxy war and to gain the GREEN territory, BLUE does not think that RED is optimizing the strategy in a logical way. 200 

Furthermore, the war clearly implies considerable costs of dead and injured soldiers and noncombatants, destroyed 201 

cities, infrastructure and military resources. These costs hurt all participants in the war, in particular GREEN and RED. 202 

Furthermore, these costs are in general nonlinear functions of the strategies of all parties. For these reasons, a zero- sum 203 

game theory approach is simply not relevant. Since the war will not only determine a modified location of the front line 204 

and the borders between GREEN and RED, a standard differential game model of the war cannot capture the true and 205 

relevant problem. 206 

The observed level of attack from RED is not possible to interpret, by BLUE, as economically optimized by RED, in the 207 

interest of the people in country RED. The BLUE interpretation is that the RED command has other motives for the 208 

attack on GREEN. BLUE has however qualified intelligence resources that can give a reliable prediction of the time path 209 

of the military resources that RED can and will send to the front.  210 

As will be shown, from the BLUE perspective, there is an optimal position of the front. This position is a function of the 211 

weights in the objective function and all other parameters.  212 

The optimal control solution will show that the optimal arms support strategy for BLUE is to initially send an optimized 213 

volume of arms to GREEN, that will rapidly make it possible for GREEN to move the front to the optimal position. Then, 214 

the support should be almost constant during most of the war, keeping the war front location stationary. In the final 215 

part of the conflict, when RED will have almost no military resources left and has to retire from the GREEN territory, 216 

BLUE should strongly increase the arms support and make sure that GREEN rapidly can regain the complete territory 217 

and end the war. 218 

 219 
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Derivation of the optimal net profit principle 220 

Below, fundamental mathematical methods will be used. These are well presented by Chiang (1974). We consider a 221 

country, GREEN, with a rectangular land surface. Compare the illustration in Figure 1. The coordinate in the west to 222 

east direction is denoted X. At the border to the west, X = 0. At the border to the east, X = K. At time t, the war front has 223 

the X coordinate x(t). The war front is a line in direction north, from the southern border to the northern border. 224 

GREEN has complete control of the territory to the west of the front. RED attacks GREEN from the east.  225 

The number of troops that can be supported by GREEN and can be active at the front and to the east of the front, behind 226 

the RED line, attacking RED logistics during transport to the front, is proportional to the area controlled by GREEN, 227 

and denoted nG.  228 

 ( ) , 0G G Gn c x t c=   
(1) 

 229 

The distance that the RED logistics support has to travel, at time t, from the RED border to the front, is K-x(t). RED has 230 

a fixed number of tanks that can be used to protect the RED logistics. Hence, if the distance from the eastern border to 231 

the front increases, and the amount of support needed at the front per time unit is constant, then nR , the number of 232 

tanks per protected and transported unit, decreases.   233 

( )
1

( ) , 0R R Rn c K x t c
−

= −   
(2) 

 234 

In Figure 2., the war front is located to the west of the war front in Figure 1. Furthermore, in Figure 2., the number of 235 

GREEN units east of the front is lower than in Figure 1. This illustrates equation (1). In Figure 2., the RED logistics 236 

arrows are thinner than in Figure 1. This illustrates equation (2).    237 

 238 

Figure 2. 239 

The war map of the country GREEN at time t. Explanations are given in the main text. In this case, the frontline x(t) = 240 

3.0. Compare Figure 1., where the frontline at the same point in time has another location.  241 

 242 
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y is a particular military force ratio, defined in (3).  243 

G

R

n
y

n
=  

 

(3) 

 244 

Clearly, as we see from equations (4) and (5), y is a quadratic function of x.  245 

( )
1

( ) G

R

c x
y x

c K x
−

=
−

 

 

(4) 

 246 

( ) ( )2( ) , 0, 0G G
G R

R R

c c
y x x K x Kx x c c

c c
= − = −    

 

(5) 

 247 

Equations (6) and (7) show that y takes the value zero in case the front is identical to the western or eastern border. In 248 

all other war front locations, y is different from zero. 249 

 250 

(0) 0, ( ) 0y y K= =  (6) 

 251 

( ) ( )( ) 0 0y x y y K=  =  =  
(7) 

 252 

First, we assume that the expected net profit of BLUE caused by RED losses is proportional to y. Equations (8) to (10) 253 

show that y has one unique optimum and that this is a unique maximum. A star indicates an optimal value. This 254 

optimum occurs when the war front is located exactly in the middle of the country GREEN, when the war front has 255 

location K/2. The absolute values of the constants cG and cR do not affect this result, as long as they are both strictly 256 

positive. 257 

( )2( ) G

R

c
y x Kx x

c
= −  

(8) 

 258 

( ) *( )
2 0

2

G

R

cdy x K
K x x x

dx c

 
= − =  = = 

 
 

 

(9) 

  259 

2

2

2( )
0G

R

cd y x

dx c

−
=   

 

(10) 

  260 

The optimal front location and the functional form of the BLUE net profit function: 261 

Would the optimal location of the war front, from the BLUE perspective, be different from K/2, if the expected profit 262 

would not be proportional to the force ratio, y, but proportional to y2, y3 or y raised to some other exponent? Would 263 
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some added constant influence the optimal x-value? To answer these questions, let z(x) be a generalized function of the 264 

force ratio, according to (11). 265 

( )0( ) ( ) , 0z x z y x


= +   
 

(11) 

Equations (12) to (16) show that the unique value of x that maximizes z(x) also is the unique value of x that maximizes 266 

y(x).  267 

( )
1( ) ( )

( )
dz x dy x

y x
dx dx




−
=  

 

(12) 

 268 

*( ) ( )
0 0

2

dz x dy x K
x x

dx dx

   
=  =  = =   

   
 

 

(13) 

 269 

( ) ( ) ( )
2 2

2 1

2 2

( ) ( ) ( )
1 ( ) ( )

d z x dy x d y x
y x y x

dx dx dx

 
  

− −
= − +  

 

(14) 

 270 

( )
2 2

1

2 2
( )

0

( ) ( )
( )

dy x

dx

d z x d y x
y x

dx dx




−

=

=  
 

(15) 

 271 

2 2

2 2
( )

0

( ) ( )
sgn sgn 0

dy x

dx

d z x d y x

dx dx
=

 
   =      

 

 

 

 

(16) 

 272 

Hence, the unique value of x that maximizes y(x), also is the unique value of x that maximizes z(x).  273 

If BLUE is interested to maximize the expected present value of the net profit of RED losses, the optimal location of the 274 

war front is K/2. Hence, if the value of the free GREEN territory is not at all considered in the strategy optimization, it 275 

does not matter if the expected profit of BLUE is proportional to the strength ratio y, or the strength ratio raised to some 276 

other power strictly greater than 0, such as 2 or 3. Furthermore, the optimal value of x is not affected by constants such 277 

as z0. 278 

 279 

The objective function, partial functions and motivation 280 

The following functions will now be considered as parts of the objective function. The value of the “free GREEN 281 

territory”, is considered to be proportional to the area to the west of the war front, f1(x), according to equation (17). 282 

1 1 1( ( )) ( ) , 0f x t a x t a=   
(17) 

 283 

The value of the expected net loss of RED, is f2(x), as seen in (18). The motivation is found in equation (8). 284 
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2

2 2 2 2 2( ( )) ( ) ( ( )) , 0, 0f x t a x t b x t a b= −    
(18) 

  

The cost of arms support at time t, f3(t), is a strictly increasing and strictly convex function of the support level, u(t), 285 

according to equation (19). 286 

2

3( ( )) ( ) ( ( )) , 0, 0f u t gu t h u t g h= +    
(19) 

  287 

In the optimization, the different revenues and costs are all included in f(t), as seen in (20) to (22).  288 

1 2 3( ) ( ( )) ( ( )) ( ( ))f t f x t f x t f u t= + −  
(20) 

 289 

( ) ( )
2 2

1 2 2( ) ( ) ( ) ( ) ( ( ))f t a a x t b x t gu t h u t= + − − −  
(21) 

 290 

( )

( )

2 2

1 2 2

( ) ( ) ( ) ( ) ( ( )) ,

0, 0, 0, 0

f t ax t b x t gu t h u t

a a a b b g h

= − − −

= +  =   
 

 

(22) 

 291 

If we simplify the notation, we get equation (23). 292 

2 2 , 0, 0, 0, 0f ax bx gu hu a b g h= − − −      
(23) 

 293 

The simplified stationary problem with optimal solutions in three different cases  294 

Later in this paper, we will determine the optimal solution to the dynamic decision problem. The optimal solutions will 295 

be reported as explicit functions and as graphical solutions to alternative numerically specified cases. First, however, 296 

we will determine the optimal locations of the war front via static problems. In the later analysis, these optimal static 297 

solutions will be compared to the optimal dynamic solutions. We have to select x within the region defined in (24).  298 

0 10x K  =  (24) 

 299 

STATIC CASE A: 300 

The value of the free GREEN region, to the west of the war front, is given in (25) and illustrated in Figure 3.  301 

 302 

1 50f x=  
(25) 

 303 
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 304 

Figure 3. 305 

 306 

The value of the expected net profit of BLUE, caused by expected RED losses, is given in (26) and illustrated in Figure 307 

4.  308 

2

2 100 10f x x= −  
(26) 

 309 

 310 

Figure 4. 311 

 312 

Now, we construct the total static objective function, (27), using (25) and (26). Since we are still only interested in the 313 

optimal static warfront solution, we do not have to specify the details of the arms support cost function yet. That will 314 

however be relevant and important in the later parts of this paper.  315 
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2 2150 10f x x gu hu= − − −  
(27) 

 316 

If we only care about the value of the free GREEN region, the optimal value of x is 10 = K, which means that all of the 317 

GREEN territory should be liberated from RED troops. This is also found via (28) to (29). The optimal objective function 318 

value is then found in (30). Compare Figure 3.    319 

1 50 0
df

dx
=   

 

(28) 

 320 

( )*1
10

df
x K

dx

 
  = 

 
 

 

(29) 

 321 

1
1

* * *

1 1 1 10 10
( ) max 50 500

x Kx
f x f x

  =
= = =  

(30) 

If we want to maximize, the expected net profit of BLUE, caused by expected RED losses, is given in (26) and illustrated 322 

in Figure 4, we should use equations (31) to (33). Hence, as we already know from equation (9), the optimal value of x 323 

would be K/2 = 5.  324 

2 100 20
df

x
dx

= −  
 

(31) 

 325 

2

2

2
20 0

d f

dx
= −   

 

(32) 

 326 

( ) ( )( )2
* * * *2
2 2 2 20 5 100 10 250

df
x x f x x

dx

 
=  = =  = − = 

 
 

 

(33) 

 327 

Now, we will optimize the location of the war front based on the total objective function (27). Equations (34) to (36) 328 

show how this is done. The optimal war front is now located between the different solutions that were optimal with 329 

consideration of the objective functions f1(x) and f2(x). This is shown in (37). These results are also illustrated in Figure 330 

5.    331 

150 20
df

x
dx

= −  
 

(34) 

 332 

2

2
20 0

d f

dx
= −   

 

(35) 

 333 
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( ) ( )* * * 20 7.5 150 10 562.5
df

x x f x x
dx

 
=  = =  = − = 

 
 

 

(36) 

 334 

 335 

 336 

Figure 5. 337 

 338 

 339 

* * *

2 1x x x   
(37) 

 340 

We should observe that we have now analyzed a function of the type (38). Then, the maximum value of (38) is less than 341 

or equal to the maximum values of the two components f1(x) and f2(x). The reader can check that this also is true in 342 

Figure 5. 343 

 344 

1 2( , ) ( , ) ( , )f x f x f x= +  
(38) 

 345 

( )* * *

1 2f f f +  
(39) 

 346 

STATIC CASE B: 347 

Now, we will see how the optimal location of the war front is affected if the value per area unit of the free GREEN 348 

territory increases, by 40%, as illustrated in Figure 6. Then, in Figure 7., we observe that the optimal location of the war 349 

front moves to the east.  350 

 351 
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 352 

Figure 6. 353 

 354 

 355 

Figure 7. 356 

 357 

STATIC CASE C: 358 

In Figure 8., the net profit of BLUE, caused by expected net losses of RED, increases by 100%, for every possible level of 359 

x. Then, Figure 9. Illustrates how the optimal location of the war front moves west.  360 

 361 

 362 
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 363 

Figure 8. 364 

 365 

 366 

Figure 9. 367 

 368 

Observations and conclusions from the static optimizations: 369 

We may consider the decision problem as a multi objective optimization problem. We make the following observations 370 

concerning the optimal static solutions:  371 

Let us consider the total objective functions (20) and (23). We regard them as weighted objective functions, where, in 372 

STATIC CASE A, the weight of component f1(x) is 1 and the weight of component f2(x) is 1. Then, the optimal location 373 



Automation 2022, 3, FOR PEER REVIEW 15 
 

 

of the war front is 7.5, as shown in equation (36) and Figure 5. The optimal total objective function value is 562.5. 374 

Compare equation (36) and Figure 5. 375 

In STATIC CASE B, we have increased the weight of f1(x), by 40%, to the new value 1.4. Then, the optimal static location 376 

of the front moves to the east and the total objective function value increases, compared to STATIC CASE A. Compare 377 

Figures 6 and 7. 378 

In STATIC CASE C, we have increased the weight of f2(x), by 100%, to the new value 2.0. Then, the optimal static location 379 

of the front moves to the west and the total objective function value increases, compared to STATIC CASE A. Compare 380 

Figures 8 and 9. 381 

We conclude that, in a cooperate strategy negotiation between GREEN and BLUE, it is natural that GREEN is more 382 

interested in a high value of the weight of f1(x), since the inhabitants of the GREEN territory want to have a large free 383 

territory, and that BLUE is more interested in a high value of the weight of f2(x), since the expected net value of the war 384 

is expressed as that function.  385 

Hence, depending on the relative negotiation powers of the parties GREEN and BLUE, the optimal static solution of x 386 

is found in some location in the interval between 5 and 10, or more generally, between K/2 and K.   387 

 388 

 389 

  390 

The general dynamic optimal control problem 391 

Now, we move on to the optimal control problem in continuous time. We consider a proxy war that starts at t = 0 and 392 

ends at t = T. The rate of interest in the capital market is r and the total present value is F. At every point in time, we 393 

have the total objective function (23). Then, the objective function, which we want to maximize, is (40). 394 

( )2 2

0

T

rtF e ax bx gu hu dt−= − − −  

 

(40) 

 395 

The location of the war front, x, is governed by the differential equation (41). This is based on the following assumptions: 396 

If the arms support, u, from BLUE to GREEN, increases, the time derivative of the war front increases. If the level of 397 

attack from RED, v0 + v1t, increases, the time derivative of the war front decreases. Hence, if u = v0 + v1t, the war front 398 

stays in one place. If u > v0 + v1t, the front moves east and if u < v0 + v1t, the front moves west. The following procedure 399 

will optimize the time path of u, and the optimal function u(t) will soon be determined. 400 

0 1x u v v t= − −  
(41) 

 401 

The Hamiltonian function is (42), where  denotes the adjoint variable, which is also a function of time. 402 

( ) ( )2 2

0 1

rtH e ax bx gu hu u v v t−= − − − + − −  
(42) 

 403 

The first order optimum condition is: 404 

( )2 0rtdH
e g hu

du
−= − − + =  

 

(43) 

 405 

The second order maximum condition is: 406 
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2

2
2 0rtd H
he

du

−= −   

 

(44) 

 407 

The first order maximum condition gives: 408 

( )( )0 2rtdH
e g hu

du
 − 

=  = + 
 

 

 

(45) 

 409 

0 1 0 1x u v v t u x v v t
   

= − −  = + +   
   

 

 

(46) 

 410 

0 12rte g h x v v t −   
= + + +  

  
 

 

(47) 

 411 

0 1 12 2rt rtre g h x v v t he x v − −    
= − + + + + +    

    
 

 

(48) 

 412 

0 1 12 2rte gr hr x v v t h x v −    
= − − + + + +    

    
 

 

(49) 

 413 

The adjoint equation is: 414 

dH

dx
= −  

 

(50) 

 415 

( )2rtdH
e a bx

dx

−= −  
 

(51) 

 416 

( )2rte a bx −= − +  
 

(52) 

 417 

( )0 1 12 2 2rt rte gr hr x v v t h x v e a bx− −   
− − + + + + = − +    

    
 

 

(53) 

 418 

0 1 12 2 2gr hr x v v t h x v a bx
  

− − + + + + = − +   
   

 

 

(54) 
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 419 

0 1 12 2 2 0gr hr x v v t h x v a bx
  

− − + + + + + − =   
   

 

 

(55) 

 420 

0 1 12 2 2 2 2 2 0gr hr x hrv hrv t h x hv a bx− − − − + + + − =  
 

(56) 

 421 

0 1 12 2 2 2 2 2h x hr x bx gr a hrv hv hrv t− − = − + − +  
 

(57) 

 422 

0 1 1
2

b gr a
x r x x rv v rv t

h h

−
− − = + − +  

 

(58) 

 423 

( )0 1 1
2

b gr a
x r x x rv v rv t

h h

− 
− − = + − + 

 
 

 

(59) 

 424 

0 1 1, ,
2

b gr a
x r x x m nt m rv v n rv

h h

−
− − = + = + − =  

 

(60) 

 425 

Complementary solution: 426 

0c c c

b
x r x x

h
− − =  

 

(61) 

 427 

( ) st

cx t Ae=  
(62) 

 428 

2 0c

b
s rs x

h

 
− − = 

 
 

 

(63) 

 429 

( ) 20 0c

b
x s rs

h

 
  − − = 

 
 

 

(64) 

 430 

( )
2

1 , , ,
2 4

p p b
s q p q r

h

−  
= − − = − − 

 
 

 

(65) 

 431 
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( )
2

2 , , ,
2 4

p p b
s q p q r

h

−  
= + − = − − 

 
 

 

(66) 

 432 

( ) ( )( )
2

1 2 1 20 , 0, 0
4

r b
s s s R s R b h

h

 
+           

 
 

 

(67) 

 433 

Observations concerning the nature of the complementary solution 434 

We observe that exactly two real valued roots, always, exist. These roots are always different from each other. Hence, 435 

the relevant complementary solution to the differential equation can never be based on two equal roots. Furthermore, 436 

the roots can never contain imaginary parts, which means that the complementary solution can never contain 437 

trigonometric functions such as sine and cosine functions. The complementary solution always has this form: 438 

1 2

1 2( )
s t s t

cx t Ae A e= +  
(68) 

 439 

A deeper investigation of the two real roots: 440 

2

1
2 4

r r b
s

h

 
= − + 
 
 

 

 

(69) 

 441 

( )
2 2

1 0 , 0, 0
4 4 2

r b r r
s b h

h

     
+  =                  

 

 

(70) 

 442 

2

2
2 4

r r b
s

h

 
= + + 
 
 

 

 

(71) 

 443 

( )
2 2

20 0 , 0, 0, 0
4 4 2

r b r r
s b h r

h

     
+  =                    

 

 

(72) 

 444 

We now know that one of the real roots always is strictly negative and the other always is strictly positive. 445 

1

1 1lim 0 ,
s t

t
Ae A

→
=   

(73) 

 446 

2

2

2 2

2

0

lim 0 0

0

s t

t

for A

A e for A

for A
→

 


= =
− 

 

 

 

(74) 

 447 



Automation 2022, 3, FOR PEER REVIEW 19 
 

 

2

2

2

0

lim ( ) 0 0

0

c
t

for A

x t for A

for A
→

 


= =
− 

 

 

 

(75) 

 448 

The limiting value of the complementary solution: 449 

As time goes to infinity, the complementary function converges to infinity, zero, or minus infinity, in case A2 is strictly 450 

positive, zero, or strictly negative. 451 

 452 

The Particular Solution: 453 

Let the particular solution have this functional form: 454 

0 1( )Px t w w t= +  
(76) 

 455 

1( )Px t w=  
 

(77) 

 456 

( ) 0Px t =  
 

(78) 

 457 

P P P

b
x r x x m nt

h
− − = +  

 

(79) 

 458 

( )1 0 10
b

rw w w t m nt
h

− − + = +  
 

(80) 

 459 

1 0 1

b b
rw w w t m nt

h h
− − − = +  

 

(81) 

 460 

1 0

1

b
rw w m

h

b
w n

h


− − =

 − =


 

 

 

(82) 

 461 

1 1

b h
w n w n

h b

   
− =  = −   
   

 

 

(83) 

 462 

0

h b
r n w m

b h

 
− − − = 
 

 

 

(84) 
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 463 

0

b hnr
w m

h b
− = −  

 

(85) 

 464 

0

h hnr
w m

b b

 
= − − 

 
 

 

(86) 

 465 

2

0 2

h nr hm
w

b b
= −  

 

(87) 

 466 

Finally, we conclude that the particular solution is: 467 

 468 

2

2
( )P

h nr hm h
x t n t

b b b

   
= − −   

  
 

 

(88) 

 469 

Observation: 470 

The particular solution is always a linear function of time. 471 

 472 

The solution: 473 

Since the complete solution is the sum of the complementary solution and the particular solution, we have: 474 

( ) ( ) ( )c Px t x t x t= +  
(89) 

 475 

This can be explicitly stated as: 476 

1 2

2

1 2 2
( )

s t s t h nr hm h
x t Ae A e n t

b b b

   
= + + − −   

  
 

 

(90) 

 477 

Or, in the simpler form: 478 

1 2

1 2 0 1( )
s t s t

x t Ae A e w wt= + + +  
(91) 

 479 

The time derivative of x is: 480 

1 2

1 1 2 2 1( )
s t s t

x t s Ae s A e w= + +  
 

(92) 

 481 

We remember that the adjoint variable can be expressed as: 482 
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0 1( ) 2rtt e g h x v v t −   
= + + +  

  
 

 

(93) 

 483 

Now, thanks to the explicit form of the time derivative of x, we can express the adjoint variable as an explicit function 484 

of time: 485 

( )( )( )1 2

1 1 2 2 1 0 1( ) 2
s t s trtt e g h s Ae s A e w v v t −= + + + + +  

 

(94) 

 486 

We note that x and the adjoint variable are both explicit functions of time. These functions contain a number of 487 

parameters that are already known. These functions however contain two more parameters, that have not yet been 488 

determined, namely A1 and A2. 489 

We can now determine A1 and A2 from two boundary conditions. These two boundary conditions have strictly logical 490 

motivations: 491 

We can observe the initial value of x, at time t=0, denoted x0.  492 

1 20 0

1 2 0 1 0(0) 0
s s

x Ae A e w w x= + + +  =  
(95) 

 493 

1 2 0 0A A x w+ = −  
(96) 

 494 

At time T, we want x to take the value xT. 495 

1 2

1 2 0 1( )
s T s T

Tx T Ae A e w wT x= + + + =  
(97) 

 496 

1 2

1 2 0 1

s T s T

Te A e A x w wT+ = − −  
(98) 

 497 

In some cases, we may know that the “shadow price”, the marginal capacity value, or the adjoint variable, at the time 498 

horizon, T, has to be zero. In such cases, the following equations are relevant: 499 

( )( )( )1 2

1 1 2 2 1 0 1( ) 2 0
s T s TrTT e g h s Ae s A e w v v T −= + + + + + =  

 

(99) 

 500 

( ) ( )( )( )1 2

1 1 2 2 1 0 10 2 0
s T s TrTe g h s Ae s A e w v v T−   + + + + + =  

 

(100) 

 501 

( )( )1 2

1 1 2 2 1 0 12
s T s T

h s A e s A e w v v T g+ + + + = −  
 

(101) 

 502 

1 2

1 1 2 2 1 0 1
2

s T s T g
s Ae s A e w v v T

h

−
+ + + + =  

 

(102) 

 503 
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So, if the adjoint variable, at the time horizon, T, has to be zero, the following equation would have to be included in 504 

the linear equation system that should determine A1 and A2. 505 

1 2

1 1 2 2 1 0 1
2

s T s T g
s e A s e A w v v T

h

−
+ = − − −  

 

(103) 

 506 

However, in this particular analysis, we will not make the assumption that the marginal capacity value has to be zero 507 

at time T. On the other hand, we will demand that x takes the value xT at time T. This way, we have a linear equation 508 

system with two equations that will be used to determine the relevant values of A1 and A2. 509 

Here is the linear simultaneous equation system with two equations and two unknowns: 510 

1 2

0 01

0 12

1 1
s T s T

T

x wA

x w wTAe e

−   
=     − −     

 

 

(104) 

 511 

Thanks to Cramer’s rule, we instantly get the solutions: 512 

( )

( ) ( ) ( )

( )

2 2

2 1

1 2

0 0

0 1 0 0 0 1

1

1

1 1

s T s T
T T

s T s T

s T s T

x w

x w wT e x w e x w wT
A

e e

e e

−

− − − − − −
= =

−
 

 

 

 

(105) 

 513 

( )

( ) ( ) ( )

( )

1 1

2 1

1 2

0 0

0 1 0 1 0 0

2

1

1 1

s T s T
T T

s T s T

s T s T

x w

e x w wT x w wT e x w
A

e e

e e

−

− − − − − −
= =

−
 

 

 

 

(106) 

 514 

Observations concerning the values A1 and A2: 515 

We observe that the expressions of A1 and A2, (105) and (106), have real value nominators, divided by the denominator: 516 

2 1s T s T
e e−  (107) 

 517 

We have already determined that s1 and s2 are strictly different, and that they are both real. We also know that s2 > s1. 518 

Hence, for all values of T, equal to or greater than 0, the denominator is strictly positive. Hence, A1 and A2 both exist, 519 

are determined via the expressions, and are real. 520 

The signs of A1 and A2 are the same as the nominators in the corresponding expressions.  521 

As a result, we now know these two functions: 522 

( )( ), ( ) , 0x t t t T     
(108) 

 523 

We also already know how u is linked to the adjoint variable: 524 

( )( ) 2 ( )rtt e g hu t −= +  
(109) 

 525 
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This can be reformulated as: 526 

2 ( ) ( )rtg hu t e t+ =  
(110) 

 527 

2 ( ) ( )rthu t e t g= −  
(111) 

 528 

Finally, we get the optimal control as a function time, via the adjoint function: 529 

 530 

( )
( )

2

rte t g
u t

h

 −
=  

 

(112) 

 531 

Clearly, this can also be expressed as an explicit function of time: 532 

( )( )( )( )1 2

1 1 2 2 1 0 12
( )

2

s t s trt rte e g h s Ae s A e w v v t g
u t

h

− + + + + + −
=  

 

(113) 

 533 

1 2

1 1 2 2 1 0 1( )
s t s t

u t s Ae s A e w v v t= + + + +  
 

(114) 

 534 

Observation: 535 

The optimal control function values can also be obtained in another way, as seen below. The two alternative ways to 536 

calculate u(t) can be used to confirm the correctness of the calculations. 537 

0 1 0 1( ) ( ) ( ) ( )x t u t v v t u t x t v v t
   

= − −  = + +   
   

 

 

(115) 

 538 

( )1 2

1 1 2 2 1 0 1( )
s t s t

u t s Ae s A e w v v t= + + + +  
(116) 

 539 

 540 

Results based on the general dynamic optimal control problem 541 

The optimal and explicit time dependent functions of the arms support level, the war front location and the adjoint 542 

variable, are found in equations (116), (90) and (94).   543 

Now, we will use the optimal general dynamic results, expressed in the forms of equations, to derive some optimal 544 

dynamic results for numerically specified cases. These optimal dynamic results will be compared to the optimal statics 545 

results derived in the earlier parts of this paper.  546 

Below, six different dynamic cases will be investigated in detail. DYNAMIC CASE 0, represents the standard case, and 547 

may be viewed as a dynamic version of STATIC CASE A.  548 

Parameter values in DYNAMIC CASE 0:  a = 150, b = 10, g = 1, h = 0.1, r = 0.05, v0 = 1, v1 = -0.1, x0 = 5, T = 1, xT = 10. 549 
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In each of the dynamic cases 1 to 6, some parameter has been changed from the value according to DYNAMIC CASE 0. 550 

All other parameters are the same as in DYNAMIC CASE 0. This way, it is possible to investigate how sensitive the 551 

optimal dynamic solutions are to different parameter values. 552 

The dynamic cases contain many more parameters and parameter values than the static cases, since these are needed to 553 

define and handle several things that were not present in the static problem. In (40), we have the objective function in 554 

the dynamic problem, and in (41), we have the differential equation the war front. Hence, several parameters in the 555 

dynamic optimal control problem can be found in (40) and (41). 556 

More parameters are needed in the dynamic problem than in the static problem: the parameters of the cost function of 557 

the control u, namely g and h, the rate of interest in the capital market, r, the parameters of the RED attack level function, 558 

v0 and v1, the total time of the proxy war, T, and the initial and final locations of the war front, x0 and xT. 559 

 560 

DYNAMIC CASE 0 561 

This case may be viewed as a dynamic version of STATIC CASE A, since the values of a and b are the same. Compare 562 

equation (27). In Figure 10, we observe that the location of the war front starts at the initial location, x0 = 5, and ends at 563 

the final value xT = 10, which means that GREEN controls the complete territory at the end of the war. Most of the time, 564 

during the war, the war front is very close to location 7.5, which also is the optimal value in STATIC CASE A. 565 

In Figure 11., we see the time path of the optimal arms support from BLUE to GREEN, as a function of time. This level 566 

is very high in the beginning (t < 0.2), since the initial location of the war front, 5, is far below the optimal value of the 567 

war front, 7.5, according to the STATIC CASE A.  Hence, it is important to rapidly move the front to a location close 568 

to the optimal location. That can be done with massive arms support, a high value of u, for low values of t. The logic 569 

behind that is clear from (41). During most of the war, the war front should be close to the optimal static value, which 570 

means that the optimal level of arms support, u, should be almost the same as the level of attack from RED, which only 571 

changes very slowly. For that reason, the level of u is low and almost constant, for 0.2 < t < 0.8. When we reach the end 572 

of the war, it is important for BLUE to send large amounts of arms support to GREEN, to rapidly move the war front to 573 

the original border between GREEN and RED, namely 10. This way, GREEN regains control of the complete GREEN 574 

territory exactly when the war ends. Figure 12 shows the time path of the adjoint variable,  , also denoted L.  575 
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Figure 10. 577 

 578 

Figure 11. 579 

 580 
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 581 

Figure 12. 582 

 583 

 584 

 585 

DYNAMIC CASE 1 586 

DYNAMIC CASE 1 is identical to the DYNAMIC CASE 0, with respect to all parameters except for the fact that x0 = 3. 587 

This means that the initial war front is located to the west of the corresponding war front in DYNAMIC CASE 0. Figure 588 

13 shows how the time path of the war front develops over time. We see that the front is rapidly moved east, until t = 589 

0.4, when it reaches almost the same level as we had in DYNAMIC CASE 0 and in STATIC CASE A. In the end of the 590 

conflict, the DYNAMIC CASES 0 and 1 have almost identical war front developments. 591 

In order to initially move the war front more to the east, in DYNAMIC CASE 1, than in DYNAMIC CASE 0, a higher 592 

level of arms support is needed in the early period of the war. This is also graphically seen in Figure 14, before t = 0.4. 593 

Figure 15 shows the time path of the adjoint variable,  , also denoted L. 594 
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Figure 15. 603 

 604 

DYNAMIC CASE 2 605 

DYNAMIC CASE 2 is identical to the DYNAMIC CASE 0, with respect to all parameters except for the fact that a = 170. 606 

This corresponds to the STATIC CASE B. One possible interpretation is that the relative weight in the objective function 607 

of the value of the free GREEN territory increases. Compare Figures 6 and 7. 608 

Figure 16 shows how the time path of the war front develops over time. We see that the front is rapidly moved further 609 

east, than in DYNAMIC CASE 0, until t = 0.4, when it reaches almost the same level as we had in STATIC CASE B. In 610 

the end of the conflict, the front moves to 10, and the complete GREEN territory is liberated from RED. 611 

In order to initially move the war front more to the east, in DYNAMIC CASE 2, than in DYNAMIC CASE 0, a higher 612 

level of arms support is needed in the early period of the war. In the end of the war, less arms support is needed than 613 

in DYNAMIC CASE 0, since the front does not have to move very far during the final period. Compare Figure 17. Figure 614 

18 shows the time path of the adjoint variable,  , also denoted L. 615 

 616 

 617 
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Figure 16. 620 
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Figure 17. 623 
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Figure 18. 628 

 629 

 630 

 631 

 632 

DYNAMIC CASE 3 633 

DYNAMIC CASE 3 is identical to the DYNAMIC CASE 0, with respect to all parameters except for the fact that b = 250. 634 

This corresponds to the STATIC CASE C. One possible interpretation is that the relative weight in the objective function 635 

of the value of the net profit of BLUE, caused by RED losses, increases. Compare Figures 8 and 9. 636 

Figure 19 shows how the time path of the war front develops over time. We see that the front is initially moved east, to 637 

a position to the west of the corresponding position in DYNAMIC CASE 0. This position is almost the same as we had 638 

in STATIC CASE C. In the end of the conflict, the front moves to 10, and the complete GREEN territory is liberated from 639 

RED. 640 

In order to initially move the war front less to the east, in DYNAMIC CASE 3, than in DYNAMIC CASE 0, a lower level 641 

of arms support is needed in the early period of the war. In the end of the war, more arms support is needed than in 642 

DYNAMIC CASE 0, since the front must move very far during this period. Compare Figure 20. Figure 21 shows the 643 

time path of the adjoint variable,  , also denoted L. 644 

 645 

 646 
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Figure 19. 648 
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 650 

Figure 20. 651 

 652 
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Figure 21. 654 

 655 

 656 

 657 

 658 

 659 

DYNAMIC CASE 4 660 

DYNAMIC CASE 4 is identical to the DYNAMIC CASE 0, with respect to all parameters except for the fact that v0 = 5. 661 

This means that the RED attack level is considerably higher than in DYNAMIC CASE 0. 662 

Figure 22 shows how the time path of the war front develops over time. We see that the front develops exactly as in 663 

DYNAMIC CASE 0.  664 

In order to handle the increased level of RED attack, keeping the front line at in the same location as in DYNAMIC 665 

CASE 0, the level of arms support from BLUE to GREEN must be higher, during every time interval. This is clearly 666 

illustrated in Figure 23. Figure 24 shows the time path of the adjoint variable,  , also denoted L. 667 

 668 
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Figure 22. 670 
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Figure 23. 673 
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 675 

Figure 24. 676 

 677 

DYNAMIC CASE 5 678 

DYNAMIC CASE 5 is identical to the DYNAMIC CASE 0, with respect to all parameters except for the fact that v1 = 1. 679 

This means that the level of RED attack is an increasing function of time. In DYNAMIC CASE 0, the RED level of attack 680 

was a slowly decreasing function of time. 681 

Figure 25 shows how the time path of the war front develops over time. We see that the front develops exactly as in 682 

DYNAMIC CASE 0.  683 

In order to handle the increasing level of RED attack, keeping the front line at in the same location as in DYNAMIC 684 

CASE 0, the level of arms support from BLUE to GREEN must be a higher than in DYNAMIC CASE 0, particularly in 685 

the later part of the war. This is also shown in Figure 26. Figure 27 shows the time path of the adjoint variable,  , also 686 

denoted L. 687 

 688 
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Figure 25. 690 
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Figure 26. 694 
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 696 

Figure 27. 697 

 698 

 699 

Conclusions 700 

From the BLUE perspective, there is an optimal position of the war front. This optimal position is a function of the 701 

weights in the objective function and all other parameters.  702 

The optimal arms support strategy for BLUE is to initially send a large volume of arms support to GREEN, to rapidly 703 

move the front to the optimal position.  704 

Then, the support should be almost constant during most of the war, keeping the war front location stationary.  705 

In the final part of the conflict, when RED will have almost no military resources left and will try to retire from the 706 

GREEN territory, BLUE should strongly increase the arms support and make sure that GREEN can rapidly regain the 707 

complete territory and end the war. 708 

 709 

Discussion 710 

A proxy war in country GREEN, between a coalition of countries, BLUE and the attacking country RED, has been 711 

analyzed, where RED wants to increase the size of the RED territory and BLUE wants to involve more regions in trade 712 

and other types of cooperation. This type of conflict has considerable similarities to a real war in Europe in the year 713 

2022. It is critical to the safety and stability of our world to understand and be able to manage this, and similar, proxy 714 

wars, in the optimal way. Hopefully the reader will be able to utilize and adapt the optimization approach developed 715 

in this paper, to help stabilize our world and to reduce the levels of future military conflicts.  716 

In the model, and in the real world, BLUE and RED both have large amounts of nuclear weapons and other weapons 717 

of mass destruction. It is urgent that we, the inhabitants of Earth, can avoid using these in order not to start a world war 718 

that would destroy most parts of our unique planet.  719 

 720 

 721 

 722 
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 791 

Appendix 792 

The following software has been developed by the author. It was used to derive the optimal dynamic solutions that are 793 

found in this paper. All equations in the software are derived in the main section of this paper. The programming 794 

language is QB64. 795 

 796 

Rem PL_DiffGame.bas 221008_1650 797 

Rem Peter Lohmander 798 

Rem  Hamiltonian function H = @exp(-r*t)*(a*x-b*x^2-g*u-h*u^2) + L*(u-v0-v1*t) 799 

Rem  0 =< t <= T, x(0) = x0, x(T) = xT 800 

 801 

Open "A_DIFF_OUT.txt" For Output As #1 802 

Dim x(100), L(100), u(100) 803 
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 804 

Print "" 805 

Print " PL_DiffGame by Peter Lohmander 221008_1650" 806 

Print "" 807 

Print #1, "" 808 

Print #1, " PL_DiffGame by Peter Lohmander 221008_1650" 809 

Print #1, "" 810 

 811 

Rem Parameters 812 

a = 150 813 

b = 10 814 

g = 1 815 

h = 0.1 816 

r = 0.05 817 

v0 = 1 818 

v1 = -0.1 819 

x0 = 5 820 

T = 1 821 

xT = 10 822 

 823 

Print " Parameters:" 824 

Print " a = "; a; " b = "; b; " g = "; g; " h = "; h; " r = "; r 825 

Print " v0 = "; v0; " v1 = "; v1; " x0 = "; x0; " T = "; T; " xT = "; xT 826 

Print "" 827 

Print #1, " Parameters:" 828 

Print #1, " a = "; a; " b = "; b; " g = "; g; " h = "; h; " r = "; r 829 

Print #1, " v0 = "; v0; " v1 = "; v1; " x0 = "; x0; " T = "; T; " xT = "; xT 830 

Print #1, "" 831 

 832 

Rem Derivations: 833 

m = (g * r - a) / (2 * h) + r * v0 - v1 834 

n = r * v1 835 

p = -r 836 

q = -b / h 837 

s1 = (-p) / 2 - ((p / 2) ^ 2 - q) ^ (1 / 2) 838 

s2 = (-p) / 2 + ((p / 2) ^ 2 - q) ^ (1 / 2) 839 

w1 = -(h / b) * n 840 

w0 = h * h / (b * b) * n * r - (h / b) * m 841 

 842 

Rem Calculations of A1 and A2 via matrix algebra and Cramers rule 843 

A1 = ((x0 - w0) * Exp(s2 * T) - (xT - w0 - w1 * T)) / (Exp(s2 * T) - Exp(s1 * T)) 844 

A2 = ((xT - w0 - w1 * T) - Exp(s1 * T) * (x0 - w0)) / (Exp(s2 * T) - Exp(s1 * T)) 845 
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 846 

Print " Derived results: " 847 

Print " s1 = "; s1; " s2 = "; s2 848 

Print " w0 = "; w0; " w1 = "; w1 849 

Print " A1 = "; A1; " A2 = "; A2 850 

Print "" 851 

Print #1, " Derived results: " 852 

Print #1, " s1 = "; s1; " s2 = "; s2 853 

Print #1, " w0 = "; w0; " w1 = "; w1 854 

Print #1, " A1 = "; A1; " A2 = "; A2 855 

Print #1, "" 856 

 857 

Rem The values of x(t), L(t) and u(t), are determined for 101 values of t. 858 

For tindex = 0 To 100 * T 859 

    treal = tindex / 100 860 

    x(tindex) = A1 * Exp(s1 * treal) + A2 * Exp(s2 * treal) + w0 + w1 * treal 861 

    L(tindex) = Exp((-r) * treal) * (g + 2 * h * (s1 * A1 * Exp(s1 * treal) + s2 * A2 * Exp(s2 * treal) + w1 + v0 + v1 * treal)) 862 

    u(tindex) = s1 * A1 * Exp(s1 * treal) + s2 * A2 * Exp(s2 * treal) + w1 + v0 + v1 * treal 863 

Next tindex 864 

 865 

Rem The values of x(t), L(t) and u(t), are printed for 101 values of t. 866 

Print "The optimal time path values. (All values have been multiplied by 100000)." 867 

Print #1, "The optimal time path values. (All values have been multiplied by 100000)." 868 

Print "          t       x(t)       L(t)       u(t)" 869 

Print #1, "          t       x(t)       L(t)       u(t)" 870 

Print "Note that values in the table found below have been multiplied by 100000." 871 

 872 

J = 100000 873 

 874 

For tindex = 0 To 100 * T Step 1 875 

    treal = tindex / 100 876 

    Print Using "###########"; treal * J; x(tindex) * J; L(tindex) * J; u(tindex) * J 877 

    Print #1, Using "###########"; treal * J; x(tindex) * J; L(tindex) * J; u(tindex) * J 878 

Next tindex 879 

Close #1 880 

End 881 

1.  882 


