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Abstract

Optimal Dynamic Forest Fire Management Adapted to Stochastic Weather

By Peter Lohmander. Empirical data and support: Zohreh Mohammadi.

Global warming is a major problem of our planet, which can be solved, [1], [2], [3], [8], [11]. Forest fires represent growing and severe 
direct safety problems in large parts of the world [5], [9]. Furthermore, the fires send large amounts of CO2 to the atmosphere, which 
increase the speed of global warming. Recent research has estimated the size of a forest fire as a nonlinear function of the air
temperature, relative humidity, wind speed and the time it takes for the fire brigade to reach the fire and start the fire suppression, 
[10]. Several ways to handle the forest fire problems have been suggested, [4], [6]. The sizes of fires can be reduced if the fire 
brigades reach the fires more rapidly. Central decisions in fire management optimization are to determine the numbers of fire brigade 
units, and their locations, at different points in time. A first study in this direction is [7]. If the spatial pattern of fire brigade locations 
is held constant and the number of fire brigade units per area unit increases, the capacity cost of the fire brigades increases. This 
represents an investment in firefighting capacity. Simultaneously, the expected distance to forest fires in random locations decreases, 
and the expected fire sizes are reduced. The reduced expected costs of burned forests can be interpreted as an expected economic
revenue caused by the investment in firefighting capacity. In this paper, the optimal level of this investment is determined. The 
expected values of air temperature, relative humidity and wind speed, are determined as deterministic functions of time, during a 
typical year, in a region of Czech Republic. Furthermore, probability density functions and probability functions of the stochastic 
residuals of these weather components are derived. The air temperature residuals and the relative humidity residuals have 
considerable negative correlation. First, labor employment constraints are applied, that require that the numbers of fire brigade units 
at different points in time are determined before the true weather component residuals are known. Optimality conditions of the 
dynamically changing firefighting capacity levels are analytically determined. The solutions are found to give unique maxima.
Comparative statics analysis is used to determine the directions of change of the optimal capacity levels under the influence of
alternative parameter changes. The expected fire sizes can also be numerically approximated via random numbers with relevant 
correlations, based on Cholesky factorization. Finally, a generalized stochastic dynamic programming version of the dynamic 
investment decision problem is presented, based on a very flexible labor market, where the number of fire brigades rapidly can be 
adapted to the sequentially revealed weather situation.
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Contents:

• The firefighting capacity optimization problem

• General solution to the firefighting capacity optimization problem

• Comparative statics analysis of the optimal solution: How is the 
optimal solution affected by the parameters?

• Fire growth as a function of weather conditions

• Background to empirical weather and fire data

• Dynamic and stochastic properties of air temperature, relative 
humidity and wind speed

• Conclusions
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The firefighting capacity
optimization problem
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Fire fighting
unit 1.

x

y

Forest fires have a spatially uniform 
probability density function.

Fire fighting units (blue balls) have initial 
locations in a regular ”infinite” network
with roads in directions N-S and E-W.

The distances between roads is small and 
fire fighting units can always use roads in 
the two directions to reach the different 
fires. (See the purple arrows.)

The decision problem is to determine
the optimal value of k, where the
distance between the nearest neighbours
is L = 2k.

The optimal value of k is affected by many
different parameters, some of which
are functions of the season, for instance air 
temperature, relative humidity and wind
speed. These parameters affect fire growth.

N
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( )min ( ;.) ( )I F
k

C k C k C k= +

Expected cost of
fire fighting capacity
”investment” 
and use of these
resources

Expected cost of destroyed and damaged forests
including costs of CO2 emissions 

Expected total 
costs as a 
function of k.

Fire fighting groups are
located in a regular network with
roads in directions South-North
and East- West. The distance
in one of these directions, between
two neighbour groups, is L = 2k.
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( )( ) , , , ( , )F DC k c N B A H W t k m=  

Expected cost
per burned ha.

Expected number of fires
per time unit. 

Expected size of burned
forest, per fire.

A = Air temperature (Stochastic)
H = Relative humidity (Stochastic)
W = Wind speed (Stochastic)
t(k,m) = expected time of fire life.
m = fire life time before the

fire fighting unit leaves the initial
location and starts to move towards
the fire.

Expected cost of destroyed and damaged forests
including costs of CO2 emissions 
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( )I uC k c U= 

Expected cost of
fire fighting capacity
”investment” 
and use of these
Resources.

Expected cost
per unit.

Number of units per 
10000 square km

2

2 2

1 1 1

(2 ) 4
U k

L k

−= = =
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( ) ( )1 2, , , ( , ) ( , ) , ,B A H W t k m B k m B A H W= 

This will be shown to hold
in general cases.

This has been estimated
with empirical data.Expected size of burned forest, 

per fire.

2 2
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B k m c k km m

 
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Random fires in the square
that is closest to fire fighting
unit 1.

Fire fighting
unit 1.
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General solution to the firefighting capacity
optimization problem
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Comparative statics analysis of the optimal 
solution: How is the optimal solution affected by 
the parameters?
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If the cost per fire fighting unit increases, 
the optimal distance between fire fighting units increases.
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If the cost per fire damaged hectare of forest increases, 
the optimal distance between fire fighting units decreases.
Note that, if the cost of CO2 emissions is considered, the
optimal value of k is lower than if we do not care
about CO2 emissions.
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If the expected number of fires per area unit increases, 
the optimal distance between fire fighting units decreases.
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If the general fire speed parameter c increases, 
the optimal distance between fire fighting units decreases.
Possible reasons: More open terrain and/or 
larger amounts of dry grass and other fuels.
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If m increases, the fires get more time to grow before fire supression starts, 
and  the optimal distance between fire fighting units decreases.
Possible reasons: Less efficient and/or intensive fire surveillance,
fog, smoke or worse road conditions, forcing the fire fighting units
to decrease the travel speed.  



Fire growth as a function of weather conditions

The comparative statics analysis now needs some empirical
information.
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The empirical estimations gave these results:
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If the air temperature increases, the speed of fire growth increases, 
and the optimal distance between fire fighting units decreases.
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If the relative humidity increases, the speed of fire growth decreases, 
and the optimal distance between fire fighting units increases.
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If the wind speed increases, the speed of fire growth increases, 
and the optimal distance between fire fighting units decreases.



Comments on the 
optimimization problem

Above, we have assumed that labor employment constraints are applied, that require that the numbers of 
fire fighting units at different points in time are determined before the true weather component residuals 
are known. 

Optimality conditions of the dynamically changing firefighting capacity levels have been analytically 
determined. 

The solutions have been found to be unique minima. 

Comparative statics analysis has been used to determine the directions of change of the optimal capacity 
levels under the influence of alternative parameter changes. 

The expected fire sizes can also be numerically approximated via random numbers with relevant correlations, 
based on Cholesky factorization. 

A stochastic dynamic programming version of the dynamic investment decision problem is also possible to 
present, based on a very flexible labor market, where the number of fire fighting units rapidly can be 
adapted to the sequentially revealed weather situation. However, since time is limited and since such labour
conditions are not relevant in many countries, this will not be presented here.
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Background to empirical weather and fire data
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Dynamic and stochastic properties of air 
temperature, relative humidity and wind speed

46

The following parameter estimations related to dynamic and 
stochastic properties of air temperature, relative humidity and 
wind speed, can be used in the fire fighting capacity optimization
problem. 
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Conclusions

The optimal fire fighting capacity is a dynamically changing function of
several parameters. The optimal solution has been derived and presented
in general form. Comparative statics analysis has been used to show how
the optimal decisions are affected by parameter changes.

Since the optimal decisions are functions of many local cost parameters 
and since different regions have different and dynamically changing
weather parameters, the optimal capacity solutions are not the same in 
different regions.

The general approach presented here should be possible to use in most
countries and regions of our world.
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Thank you very much for 
your time and a most 

interesting conference!

Professor Dr Peter Lohmander
Peter@Lohmander.com
http://www.lohmander.com/Information/Ref.htm
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