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Abstract

Wildlife Dynamics and Management Optimization via Statistics and Mathematics
By Peter Lohmander

Three alternative approaches to dynamic optimization of the management of moose populations are presented. First, a Wiener
process and stochastic optimal control theory are used to determine an explicit function for the optimal adaptive hunting level,
according to the methods described in Lohmander [1]. Then, the dynamical predator- prey system with wolf and moose populations
is defined along the lines presented in Lohmander [2]. The dynamics is analyzed via simulation and the analytical solution to the
linearized system, close to the system equilibrium. The system is found to be stable, but it converges very slowly. A deterministic
steady state control optimization approach is applied to this system. However, the stochastic variations in the moose and wolf
populations are considerable. For this reason, the final approach is the following, based on Lohmander [3]. A numerical approach to
optimal adaptive integer pulse control of stochastic nonlinear systems is presented. For most stochastic nonlinear systems, optimal
adaptive control rules cannot be derived with analytical methods. A robust optimization algorithm is created. The complete nonlinear
adaptively controlled stochastic system is simulated during 100 years, for 100 alternative sequences of stochastic disturbances, for
every feasible integer combination of adaptive control rules. The optimal adaptive control rules that maximize the expected value of
the objective function are selected as the optimal adaptive control rules. The method is very general and can easily be applied to
most adaptive nonlinear stochastic control problems, from technology, management or other fields. The method is tested and
applied to the wolf-moose predator prey system. The parameters of this stochastic nonlinear dynamical system have recently been
estimated from empirical data from Isle Royale in Lake Superior, USA. The objective function is the expected total present value of all
hunting net revenues and the environmental value of preserving the wolf population. The value of the wolf population is a strictly
increasing and strictly concave function of the population level. Periodically, the region is visited and the population levels are
determined. If the population levels, one for each species, exceed the optimal control limits, then the populations are reduced to the
control limits, via hunting. Then, the system is left to develop until the next period. Optimal population control limits and objective
function values are determined for alternative levels of the wolf population value function. The average optimal moose hunting level
is a decreasing function of the wolf population value parameter and an increasing function of the level of risk in the predator prey
system. The average oPtimaI wolf population level is an increasing function of the wolf population value parameter and a decreasing
function of the level of risk in the predator prey system.



Three alternative approaches to
dynamic optimization of the
management of moose
populations are presented.

First, a Wiener process and
stochastic optimal control theory
are used to determine an explicit
function for the optimal
adaptive hunting level,
according to the methods
described in Lohmander [1].

[1] Lohmander, P, 2017. Optimal Stochastic
Control in Continuous Time with Wiener
Processes: General Results and Applications to
Optimal Wildlife Management, /ranian Journal of
Operations Research, Vol. 8, No. 2, 58-67.
http://iors.ir/journal /article-1-541-en.pdf
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We maximize the objective function:

E J.F(X”Uf,r)dr+S(Xr,T) (1)

where X, 1s the state variable and U, 1s the closed loop control variable. Time 1s represented by ¢ and
T 1s the time horizon. F(.) 1s the instantaneous profit rate and S(. ) 1s the salvage value. E|. | denotes
expected value. z; 1s a standard Wiener process.

dX, = (XU, t)ydt+G(X,, U, t)dz, X, =x, (2)
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According to the Bellman principle of optimality, we may determine the value function V(x, t) as
the maximum of the sum of the net reward during the first short time interval, F(.)dt. and the value
function directly after that time interval:

V(x,t) =max E [F(:r:_, u,n)dt +V(x+dX,, 1+ dr)] . (3)
A Taylor approximation gives

V. (dX,) X v (dt)*
2

V(x+dX,,t+dt) =V (x,t)+V.dX, +V.dt + +V_(dX,)(dt)+ o(.) 4)



Hence, the value function 1s approximately given by

-

V_G*
VmaxE{FdHVw; fdt+Vdt+ -“'2 drm(.)}_ (11)

Since V; 1s not a function of u. we obtain the "Hamilton-Jacobi-Bellman equation” as follows:

—V _maxE[FjLV;erVHZG } (14)

with the boundary condition

V (x,T)=S(x,T). (15)



3. The Particular Stochastic Optimization Problem

We want to maximize the expected present value of wildlife management. We need the following
notations: u = u(t) 1s the control variable, the level of hunting at time ¢, x = x(t) 1s the size of the
wildlife population. (k, p, f) are objective function parameters. The net revenue of the hunting and
meat values, ku — pu?, is a strictly concave function of the hunting level. fx. which is proportional
to the population level. x. 1s the cost of destroyed forest plantations and cost of traffic accidents caused
by the wildlife population. The population growth increases with the size of the population and
decreases with the hunting level. The magnitude of the stochastic population changes depend on the
standard Wiener process. z. the size of the population. and the risk parameter s. With r as the rate of
interest 1n the capital market. we then have the following problem:

10



o

maXE{J.e” (ku— pu’® — fx)dt

0

s.t. dx =(gx—u)dt + sxdz
k>0,p>0,f>0,5s>0.

R(u,x) = (ku— pu” — fx).

(16)

(17)
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The "Hamilton-Jacobi-Bellman equation” becomes

2.2 o
sTx°J_(x,1)

—J (x,t)=e " R(u(t),x(1)) + +J_(x,1)(gx(t) —u(t)). (18)

Now, the problem i1s to determine the value function and the control function so that the Hamilton-
Jacobi-Bellman equation (HIBE) 1s satisfied. Let us assume that the value function can be expressed

as follows:

V(x)=a+bx+cx’, (19)
J(x(t),t)=eV(x)=e"(a+bx+cx?). (20)
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We need to optimize the control. u:

max Z(u) = (ku — pu’® — fx)+ %Slxl 2c+(b+2cx)(gx —u).

Using the optimal values of the control. via the optimized control function, we get

J—b—2cx k—b—2cx ) 1, ﬁ
Z =(k—b—2cx) s —p i — fx+—s"x"2c+bgx+ 2cegx”.
2p 2p 2

(26)

(32)
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Now, we have obtained a quadratic function. that always has to be zero. If the function 1s notzero,
then the HIBE 1s violated. Since the function must hold for all possible values of x. the size of the
population, 1t 1s clear that we have three equations that can be used to determine the parameters

(a,b,c):

2 2 1; _ - } _ .’1 7 2
O[k +b" —2bk m,]Jr(_(() k) +bg—rb—f)x+{(—+£‘$'+2Cg—:'c.‘ x“. (41)
4p p p

=0 =0 =0
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c=p(r—2g—s7).
b kQe—r+s)—f

2

g+ ﬂ_(f—k(g—;*))
4pr(g+s7)

—

V(x)=a+bx+cx’, (47)

(/-kg-n) (k2g—r+s)—f
4pr(g+s’)

|

V(x)= ]x+p(r2gsz)x2. (48)

g+s°

15



Next. we will determine the optimal control function. We know

. (k—b—2cx
u = :
2p

* _ k(?*—g)Jrf
2p(g+57)

U +(Q2g—r+s57)x

16



The Numerically Specified Case
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Figure 1. The optimal total present value function, VV(.) as a function of the population density, x,

and the stochastic parameter s.
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Then, the dynamical predator- prey system with wolf and moose
populations is defined along the lines presented in Lohmander [2].

The dynamics is analyzed via simulation and the analytical solution to
the linearized system, close to the system equilibrium.

The system is found to be stable, but it converges very slowly.

A deterministic steady state control optimization approach is applied
to this system.

[2] Lohmander, P, 2021. Dynamics, stability and sustainable optimal control in wolf-moose systems,
International Robotics & Automation Journal, Volume 7, Issue 1, 2021, pages 24-33.
https://medcraveonline.com/IRAT]/IRAT]-07-00223.pdf
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* AM >
M~——= aM —bM —cW
* AW (6)
Wa——=  —gW+hMW
h At

Then, two multiple regression analyses were performed. The
residuals (E.‘ A 3 EH,) are assumed to be Normally distributed with

zero means and correlations.

-

AM
At w

———= a-bM -—c—+¢y,

{ M M (?)

AW

—M + hM +

— —g =

W W

T
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The simplified estimated differential equation system 1s:

rl'

M= 0372M —0.178x10 "M~ — 6.593W

W= —0.244W +0.230x10 ~ MW

(17)
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W = Wolf population size

10 System equilibrium
i i - where M = 1061 and W = 29.47
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W = Wolf population size
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In equilibrium, we have:

-

]
M= aM.—bM.” —cW. =0
y 1 1 1 (33)
]
W= —gW, +hMW, =0

Yo

Now, we will let u and v represent small deviations from the
equilibrium.
M =M +u (34)

W:Wi+v (35)

26



The differential equation system may now be rewritten as (36).

-

=:ﬂ:f = H(M"I+H)—E)(ﬂzf1+n)2—E(H’;+v) 36)
L
W = —g(ﬁf’i+v)+ff(ﬂ/fl+u)(ﬁi+v)

e

The system (37) follows:

o~

i.

aM, + au — bﬂi’f — 2bM u — bu" — cW, —cv (37)

D

L
w —gW, —gv+hM W, + hM v + hWau + huv

27



I’F

e

e

e

u=M= au— Zbﬂflrr — E:-rrzl — v

® ®
v=W= —gv+hMv+hWu+ huv
L

i

(n — Zbﬂi"l)fr +(—c)v _bu’

y = (f?ﬁfi)n +(—g + hﬂ:fl)er hirv

(40)
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As we approach an equilibrium, the second order terms go to zero

much faster than the first order terms.
2

i uv v 41
(H—}Uﬂv—)(})j — > 0A——>2>0A——>0 (41)

L 2 V

ey 2
Hence, close to the equilibrium, v~ * 0 Auv = 0 .
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We may express the linear differential equation system as (43).

I
L]

v

(a—20M,)
h

—C

(—g + hM | )_

I

v

(43)

We remember that the wolf population 1s m equlibrium. This

gives (44).

W=0|=(-g+hM)=0

(44)
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Hence, the differential equation system 1s simplified.

- [ 1 p— —
7 a—2bM ) —c || u
= ( : (45)
. hW 0 [ v
, _ _
The parameter values that we now need are these:
a=0372.b=0178x10 ~ ¢ =6593, g = 0244 h=0230x10 .M, ~ 1061 V] ~ 29.47
(46)
With the parameter values, we get:
e i
| —3 ~ )
u -5.716 x 10 —0.593 || u
* | L A3 (47)
6.778 x 10 0 v
y - L




We consider exponential functional forms, as in (48).

A A
u(r) = uge A v(t) = Vo€ E (48)
Then, the fime derivatives can be obtained and included in the
equations, as 1n (49).

Jul | =5716x10 °  —6.593 || u (49)
Av 6.778 x10 " 0 v




Clearly, 1t 1s necessary that (50) 1s satisfied.

(—5.?16x 10
6.778 x 10 "

— i) —6.593

(0—1)_ i

I

v

0
0

(50)

We want to be sure that nontrivial solutions can be obtained. This
implies the condition found 1 (51).

(Hf—Uf‘ﬂ ?:{}

= |17l -

(—5.?]6}{111_3
—3

6.778 x 10

—;{) 6593

(0-2)

=0

S1)

Hence, a quadratic equation has to be solved. This 1s found 1 (52).

‘D‘ = 12 45716x10 4+ 44.687x10 "

~ 0 (52)
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|D| =22 +5716x10 A +44.687x10 "

D=2+ pa+q=0

There are, in general, two solutions.

\ 2
p=-£4/ (EJ —q
2 2

/= —0.002858 %/ 1/-0.0446788

(32)

)

s

(5

34



Obviously, we have two complex roots. The real part 1s negative.
This means that the solutions will be converging spirals. Since the
real part 1s close to zero, the solution converges very slowly. In fact, 1t
takes approximately 243 years for the spiral to get 50% closer to the
equilibrium. This seems reasonable 1f we compare the spirals i the
Figures 2 & 3.

2 =-0.002858 %/.0.21137i (56)
$ = —0.002858, w = 0.21137 (57)
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ru(f) = " (A cos (l,.ffr) + Bsin(i;ﬁ))

= e (674w yB)eos(v) ((6-7) By t)sin(v1)

(66)



-

\_

~N

Equilibrium 1 1s:

(M,.7)|=

J

(

\

This can also be stated as:

(M,.77;) =

21
(g) (art, —821.7)
h C y
2
Y
g) h 7
h | c

(80)

(81)
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In order to determune 1f the system 1s stable or unstable, 1t turns
out that 1t 1s necessary to mvestigate the sign of the first part of the
element 1n the first row and first column of the determinant (84). In
order to do this, we first investigate the solution to an alternative
problem, found mn equation (85).

max (m’k{ —bM° ) —M* (89)

: \

The size of the moose population
that maximizes the net moose
production per year.

38



General results concerning the nature of Equilibrium 1:

(Ml <M ) — (H > [}) — Equilibrium : Unstable diverging spiral. (95)
(M’l =M ) = (n = 0) = Equilibrium : Center. (96)

(Ml > M" ) — (n < D) = Equilibrium : Stable converging spiral. (9?)
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Sustainable optimal system control

.
L
M= aM —bM° —cW —R (99)

W

—gW + hMW — SW

\

7 = P,R+P.SW + B, LN(WV)
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The two optimal values of the moose population size are:

(121)

(122)

One of the two optima gives a maximum. (The other optimum
1s a mummum, which 1s mostly also an unfeasible solution with
one or two negative population(s).) Inspection of the second order
maximum conditions and the signs of the derived populations, reveals
the feasible maximum. Since there 1s only one feasible solution that
satisfies the local maximum conditions, we accept this as the unique
global maximum. When we know the value of the moose population,
we can also determine the values of the wolf population, the moose
harvest level and the wolf adjustment level, that all, in combination,
lead to the maximum of the objective function. This 1s done 1n (123),

(124) and (125).
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:

Optimal population size (Number)

Figure 8 Optimal populations of moose (M) and wolf (W) for different levels

of the wolf population value parameter PW :
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The stochastic variations in the moose and wolf populations are
considerable. For this reason, the final approach is the following, based on
Lohmander [3].

A numerical approach to optimal adaptive integer pulse control of
stochastic nonlinear systems is presented.

For most stochastic nonlinear systems, optimal adaptive control rules
cannot be derived with analytical methods.

A robust optimization algorithm is created. The complete nonlinear
adaptively controlled stochastic system is simulated during 100 years, for
100 alternative sequences of stochastic disturbances, for ever }éasible
integer combination of adaptive control rules. The optimal adaptive control
rules that maximize the expected value of the objective function are
selected as the optimal adaptive control rules.

[3] Lohmander, P, 2021. Optimal Adaptive Integer Pulse Control of Stochastic Nonlinear Systems: Application to
the Wolf-Moose Predator Prey System, Asian Journal of Statistical Sciences, 1(1), 23-38.
http://arfjournals.com/abstract/41816_article no_3.pdf
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The method is very general and can easily be applied to most
adaptive nonlinear stochastic control problems, from technology,
management or other fields.

The method is tested and applied to the wolf-moose predator prey
system. The parameters of this stochastic nonlinear dynamical system
have recently been estimated from empirical data from Isle Royale in
Lake Superior, USA.

The objective function is the expected total present value of ali
hunting net revenues and the environmental value of preserving the
wolf population.

The value of the wolf population is a strictly increasing and strictly
concave function of the population level.



Periodically, the region is visited and the population levels are
determined.

If the population levels, one for each species, exceed the optimal
control limits, then the populations are reduced to the control limits,

via hunting.
Then, the system is left to develop until the next period.



e "t (Prru(t, o) + Pyo(t,e) + Papw V(W (i, e)))

O(M, W, u,ep) L,V
o (M, W, v, ey) Vit

(1)

(2)
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In equation (3) we see how the expected value of the objective function is estimated
from N complete stochastic scenarios. In every stochastic scenario, n, the adaptive
control functions are the same. However, the random number sequences, epf(t, ) and
ew (t,n), are different for different n.

N
m=N"'Y "N e (Pault,n) + Pwo(t,n) + Papw ¥ (W(t,n))) (3)

t n=1

Furthermore, all scenarios have the same initial conditions. These are found in (4).

(M(0,n), W(0,n)) = (Mg, Wp) = (1200,25) ,V¥n (4)
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AM = 0.372M — 0.178 x 1073M? — 6.593W + M=y,
0.135]  [0.0845 x 107%]  [2.215]

N 2 — e i
spr ~ N (,ttﬂ,;r,crmr) ,  pny = 0,0p = 0.174

AW = —0.244W + 0.230 x 1073 MW + Wew
0.117]  [0.107 x 10~

csw o~ N (,[LW,J%V) . pw = 0,0 ~ 0.334

(6)

(7)
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The stochastic nonlinear system, without controls, is (10):

AM = 0.372M —0.178 x 1073M?2 — 6.593W + Mz, (10)
AW = —0.244W +0.230 x 10> MW + Wew

When we introduce the controls, u and v, that are functions of different variables and
parameters, we get (11): *

AM = 0.372M — 0.178 x 1073 M? — 6.593W — u(e) + M=)y, "
AW = —0.244W +0.230 x 1073 MW — v(e) + Wey (11)

¢

{ AM = 0.372M — 0.178 x 1073M? — 6.593W — u(e) + Meys x RISK

AW = —0.244W +0.230 x 107°MW —v(e) + Wew x RISK (12)
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Average Optimal Moose Hunting level
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Optimal Wolf Control Limit and Average

w
Ui

30

i i N
o i o

Population Size (N) without Risk
(¥ ]

50000

100000 150000
Wolf population value parameter (5)

==0ptv0)_0 e=—AverW_0

Figure 5.

200000

250000

NO RISK

61



Optimal Wolf Control Limit and Average
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What we have done:

Optimal population control limits and objective function values are
determined for alternative levels of the wolf population value
function.

Two, of many, central observations:

The average optimal moose hunting level is a decreasing function of
the wolf population value parameter and an increasing function of

the level of risk in the predator prey system.

The average optimal wolf population level is an increasing function of
the wolf population value parameter and a decreasing function of the

level of risk in the predator prey system.



Conclusions

* Many different methods can be used to study the dynamics and to
optimize the management of wild life populations.

* This presentation includes three alternatives.

* Please continue the process and try to find the most relevant
approach to your particular problems!
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