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A Quantitative Adaptive Optimization Model
for Resource Harvesting in a Stochastic Environment

P. LoBMANDER
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This paper contains a flexible adaptive optimal control (harvesting or extraction) model for the per-
sonal computer. The profit function is an arbitrary third order polynomial where stochastic shifts in the
demand function are represented by a bounded first order autoregressive process with arbitrary
deterministic trend. The growth process is the sum of a second order polynomial and an exponential
funetion. The value of the land released after harvest is considered in the objective function. Resources
without growth, such as minerals and oil, are of course special cases. The present analysis restriets
the attention to discrete time and a discrete state space. This makes sure that the obtained solution
always is a global maximum. The computer program is included and used in the illustrating appli-
cations. The results are:

a. Problems from stochastic optimal stopping theory and from stochastic optimal “‘confinuous’
control theory have been solved through one model.

b. Some important properties of the optimal control of stochastic systems have been discovered
through the numerical model. These properties are difficult to find via analytical optimization models
because the optimal solution may be an interior solution in some periods and a boundary solution
in other periods. In most analytical medels, interior or boundary solutions are generally assumed in
all periods.

1. Introduetion

| 1 Earlier Work in the Field

The optimal intertemporal control (harvest or extraction) problem which arises in
resource management has earlier been analysed in continuous and diserete time by the
use of deterministic and stochastic optimal control theory. Some references in this
field are:

a. Probability and stochastic processes (Ito & McKeax [8], GRivMET & STIRZAKER [7])

b. General deterministic and stochastic optimal control theory (BErrovirz [1], FLE-
minG & RisHEL [3], CHOow [2])

¢. Dynamic programming and general problems in management and economiecs (Wag-
NER [19], MarLraRIS & Brocok [14])

d. Developments of optimal control theory for resource management optimization
(LoHMaNDER [10, 11, 12, 13])

e. Resource management applications of deterministic optimal control (CLARK [3],
Jonansson and LOrGREN [9])
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f. Resource management applications of stochastic optimal control (NorsTROM [15],

RisvaxD [17], GLErr [6], PinpycK [16], LoamaNper [11, 12]).

Of course, the list is far from complete. However, it gives some insight to the area of
optimization methods and the classes of resource management applications. Since the
applications are different, the optimization methods used have also been different. In
forestry, optimal stopping theoryis frequently used, since “pulse extraction™ generally
is more profitable than “continuous thinning” in the pure forest producing enterprise. -
This is often the case if prices are exogenous to the firm and there are set up costs in
production. The properties of the growth function must also be taken into consideration.
Compare CLARK ([3]), RisvaxD ([17]) and LouMaNDER ([10]). If the firm is sufficiently
large, it will affect the market prices through the extraction and the wood sales. Then,
the profit function is generally strictly concave in the harvest volume and it is not opti-
mal to harvest all of the resource during one period. A continuous harvesting strategy is
more profitable. This approach is used by Crarx [3], GLerr [6], Pixpyck [16] and
Loumaxper [10, 11, 13].

NorsTrOM [15], Risvanp [17], Pinpyck [16] and LonMANDER [12] assume that
price is a stochastic process and that growth is deterministic or nonexistent. These
assumptions have been quite relevant because the treated resources have been forests
and oil. The physical development of such resources is much easier to predict than
future prices. GLETT [6] assumes price to be deterministic and growth stochastic, which
may be more relevant when the resource is a fish population.

The model presented in this paper serves as a bridge between two areas. The solution
becomes an optimal stopping strategy or an optimal continuous control strategy,
depending on the choice of parameters.

1.2, The Purpose of the Paper

The reader of different articles in the field of optimal harvesting will find several con-
tradicting results and assumptions. A survey is presented in LonMANDER [10]. Proper
investigation shows that the obtained, almost always qualitative, results are extremely
sensitive to the assumptions. The great importance of these assumptions concerning
details in the stochastic specifications of the processes, the details of the profit function
ete. is generally not clearly specified in the articles. In fact, the author of this paper
sometimes gets the impression that new models are designed just in order to support
a particular empirical result. The model (theory) is designed in a particular way in
order to give a strong result (an unambiguous sign of a partial derivative) which is
consistent with the empirical data or the common opinion in a normative problem.
One attempt to demonstrate how sensitive the results generally are was made by Lon-
MANDER [11] via an analytical model. However, even if analytical models are important,
this paper contains a flexible numerical model. There are several reasons for this.

a. Problems from optimal stopping theory and from optimal continuous control can be
solved through the same model.

b. Thanks to the discrete state space and the solution algorithm, it is known that the

obtained solution always is a global maximum.

The qualitative results presented in the literature can easily be checked.

d. The effects of new and more relevant assumptions are easily investigated.

e. Most of the qualitative results from the analytical models can be discussed as special
cases of one model. (Of course, a numerically specified model is a special case of an
identical, but not numerically specified, model. However, theanalytical models gener-
ally have a simple structure in order to give strong results. Since the numerical

~
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models can be given a more complicated structure, the analytical model is a special
case of the more complex numerical model in the sence of structure.)

f. Results not yet discovered via the existing analytical models may be found via the
numerical model. This may show us new and fruitful directions of analytical model
building.

g. The quantitative results are almost always more important than the qualitative.
The magnitude of an effect is however often completely neglected in the economics
literature.

L8 Analysis

2.1. General Model Properties and Qualitative Observations

In this paper we will deal with a stochastic price parameter process, as opposed to most
earlier work in the field where the stochastic price has been regarded and defined as an
- exogenous process. See for instance PINDyck [16]. Fig. 1 shows a possible sample path
of the stochastic price parameter. It is defined through a finite state space in each
time period. Every time period contains 9 possible states. There may be a deterministic
trend in the price parameter process. In this version of the model, the only possible
time trend is linear (More general functional forms of the time trend could easily be
included.). The stochastic part of the price parameter process is defined as a first order
autoregressive process (AR 1). The sample path shown in Fig. 1 is typical when the
AR 1 process is stationary (around the deterministic trend).

The probability distribution of the price parameter state in period t 4 1 is shown in
Fig. 2 conditional on the price parameter state in period {. The graph is constructed
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Fig. 1. A possible sample path of the stochastic price parameter process. There are 9 pos-
sible states in each period. The price parameter is a function of state and time
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Fig. 2. The probability distribution of the price parameter state in period ¢ + 1 (expecta-
tion formed in period ¢) conditional on the price parameter state in period ¢. The graph is
constructed from the transition probability matrix when the autocorrelation parameter
takes the value 0.5.

from the transition probability matrix when the autocorrelation parameter takes the
value 0.5. The graph shows that deviations from the price parameter state 5 tend to
dissapear in the long run. In other words, the process (state) is stationary but the
equilibrium point (state 5) is moving according to the deterministic trend.

So far, we have not defined the relationship between the price and the stochastic
price parameter process. Fig. 3 shows this relation. The price parameter is a measure
of the stochastic deviation from the standard demand function (the price function).
Fig. 3 also shows other entities of economic importance; the marginal cost function and
the marginal revenue function. When the demand function shifts (because of a change
in the price parameter state), then the marginal revenue function ¢R/é¢h shifts in the
same direction and with the same magnitude. Fig. 3 indicates a part of the generalization
in this model compared to the model presented by for instance Pinnyck [16] where
price is not a function but an exogenous variable. The cost and the revenue are both
polynomial (second order in the illustrations and possibly third order in the computer
program) functions of the harvest volume. Of course, this may be regarded as a limita-
tion. However, in most cases it is difficult to empirically verify significant deviations
from the polynomial functions. The third order polynomial is a very flexible tool.
h*(PAR) denotes the optimal harvest volume in a one period analysis. However, because
we have many periods to take into account, the optimal harvest level in an arbitrary
period t is generally lower than A*(PPA R) in Fig. 3. Fig. 4 shows the profit function =
in a particular period as a function of the price parameter state. The graph is constructed
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Fig. 3. Price, marginal cost, marginal revenue and the influence of the price parameter state.
C, h, P and R denote harvest (extraction) cost, harvest (extraction) level, price (demand)
function and revenue (P*h). When the price parameter (PAR) increases, then the price
(demand) function P and the marginal revenue function ¢ R/¢h shift upwards. In the graph,
P and 2R/éh are expressed as functions of PA R (=5 and 6). The optimal harvest level (in
a one period analysis) is expressed by A*(PAR). P* denotes optimal price.
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Fig. 4. The profit function in a particular time period, = = (P(k)h — C(h)), and the price
parameter state. The graph is constructed from the assumptions presented in Fig. 2.
h*(.) is the optimal harvest level in a one period analysis.
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from the assumptions presented in Fig. 3. Since the price function and the marginal
cost function are linear, the profit function is quadratic. Clearly, the profit function is
strictly concave in most cases.

Fig. 5 shows a simplified version of the multi period problem, the dynamic program-
mmg problem. The expected present value in period ¢ of present and future harvesting,
@1, 18 maximized via the selection of A, the harvest level in period ¢. In the example il-
lustrated in Fig. b, there is no growth in the resource. When we select k,, we must con-
sider the profit from harvesting in period ¢, z(k,), and the expected present value of the
profits from harvesting in future periods, W*(t + 1, v,), as a function of the size of the
resource saved for future purposes in period ¢, y,. It is easily shown that the optimal
rule in period ¢ is the following ; The marginal profit from the resource in present extrac-
tion ¢z/th, should be equal to the derivative of the optimal expected present value.of
future harvesting with respect to the amount of the saved resource, 6W*/¢y,. This is
shown in the text and calculations in connection to Fig. 5. Many comparative dynamics
results from generalized versions of this optimization problem can be found in Lon-
MANDER [10] and [11]. We define A* as the marginal resource value when optimal deci-
sions are made. A* is easily determined via the graphical methods suggested in Fig. 5.
Furthermore, the graph shows that the optimal solution can be obtained in a simple way
and that the objective function is convex in the price parameter (shifts in the demand
function). The objective function is strietly convex within a particular parameter inter-
val. Hence, it is possible to show that the expected objective function value is a strictly
increasing function of the risk according to RorscHILD and SticLITZ [18] in the price
parameter. Compare LOHMANDER [10, 11].

Fig. 6 illustrates that the dual variable, the marginal resource value, 1* is a kinked
convex function of the price parameter if the second order derivatives Topn, a0d WE
are constants less than zero. Thus, if the profit in period ¢ is a strictly concave quadratic
function and the optimal expected present value of future harvesting is a strictly concave
quadratic function, then 1* is a kinked convex function of the price parameter. For
values of A* greater than zero, it is clear that 2* islinear in the price parameter. This means,
which is consistent with PINpDYCK [16] and LorMaNDER[10, 11], that the expected margi-
nal resource value will not change if the rigk in the price parameter changes. But,
Fig. 6 indicates that the earlier results have limited value in applied problems. i* is
bounded from below. Hence, increasing risk in the price parameter in period ¢ will
generally increase the expected marginal resource value in period £. The optimal harvest
level in earlier periods will then decrease.

Fig. 7 shows a possible shape of the function i* when z and W* are not quadratic
functions. Now it is clear that A* is strictly concave within a particular price parameter
interval. Since A* is a kinked function, the expected value of A* may increase, be un-
changed or decrease when the risk in the price parameter increases according to Ror-
scHILD and StrcLiTz [18]. Then, the optimal present harvest level may change in any
direction in the presence of risk in the future demand functions. There are three impor-
tant observations:

— Stochastic processes (with normally distributed (unbounded) stochastic components)
are not consistent with real world prices, since prices are bounded from below.

— In most resource economics a,pplications of stochastic optimal control, it is assumed
that the optimal solution is an “iénferior” solution (the intersection of 7y, and W7

in Fig. 6). This would however imply that A* < 0 in some cases, which is not consistent
with the Kuhn-Tucker conditions of nonlinear programming. As shown in connection
to Fig. 6, this has important (normative) implications.

~ Wiener processes are not relevant in the description of bounded physical processes.
Physical quantities are positive in most applied control problems.
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Fig. 5. lllustration of the simplified dynamic programming problem. The expected present
value in period [, g,, is maximized via the selection of h;, the harvest level in period .
The price parameter state PA R in period ¢ has been observed and is known.
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a is the profit in period ¢ and W* is the expected present value of future harvesting if
optimal decisions are taken then (the Bellman principle of optimality). y, denotes the avail-
able resource in period f after harvest (= the entering stock in period ¢ + 1). We assume
that and W :H"s are strictly negative. The Lagrange function is:

L = alhy, PAR) + W*(t + 1, w,) + Aly,_y — h; — ;). The first order optimum condi-
tions are:

Ly =y 41— b—y=0
LI"!: .r[.,q—ﬂ.zl]
L =Ww—i._=(].

The graphs show the optimal solution and that the objective function is convex in the
price parameter PA R (strictly convex for PA R such that 5 < PAR < 7).
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Fig, 5. The graphs show that the optimal dual variable, A¥. is a kinked convex function

of the price parameter if the second order derivatives LTy and Ill’:fw{ are constants less

than zero. 4* may be interpreted as the marginal resource value. Because of convexity,
increasing risk according to RorscHILp and Strerirz [18] in the price parameter implies
that the expected value of A* (before the price parameter is known) increases nonstrietly.
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Fig. 7. The graph shows a possible shape of the function A*, the marginal resource value.

when the second order derivatives w;, and W}, are not constants. (Compare Fig. 6.)

In this case, 1* is a strictly concave function of the price parameter for 2* > 0, However,
since the function is kinked, the expected value of A* may increase, be unchanged or
decrease, when the rizk in the price parameter increases.

0 o
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— Generally, if the stochastic processes (or the dual variables) are bounded, this will
affect the optimal control of the system. Hence, we should generally not believe in
optimal control strategies derived from models based on the assumptions of processes
with normally distributed stochastic components and “inferior” solutions.

2.2. Results from the Numerieal Optimizations

This section contains results and associated remarks from optimizations with the
numerical adaptive model ADAPTEXT, which is included in the appendix. There, the
parameter values used in the construction of the graphs can be found in a table.
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Fig. 8. The graph shows the expected present value of future extraction (harvesting) as a
funetion of the entering stock and the standard deviation of the stochastic component
in the price parameter process (adjusted because of a bounded integer state space). Fig. 5
shows that the objective function is convex in the price parameter. This is the reason why
increasing risk in the price parameter process (as shown in this figure) leads to an increasing
expected present value of future harvesting. Of course, Fig. 5 shows the analysis of a very
special and restricted case. A more rigorous derivation of the proofs is found in LoEMANDER
[10] and [11]. The logic behind the result is: When there are price parameter fluctuations,
we may increase the harvest during good years and decrease it during the low price years.
Since we adapt to these changes, we benefit from the price variability and risk is valuable.
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Fig. 8 shows that the expected present value of future harvesting is a strictly in-
creasing function of the risk in the price parameter process. This is not really surprising
since one has the option to increase harvesting during the good price years and to
reduce harvesting during low price years.

4 ()
20~ .

|2 ate of

interest ‘ h* (1)
20° 30r B-0B=2

1‘5" '! 5 . r_—

5 25}

L 20
10

e 15—

E /- B=-5
5} 108 A abam
: ol

v
L. L] s
st ./‘*-

B Y

s P4

. -’

0 0 =y g ‘ el Ay AR (B s o

1 2. 3 &£ 5§ & 7 8 9 State

Fig. 9 Fig. 10

Fig. 9. The optimal extraction level as a function of the price parameter and the rate of
interest. If the rate of interest changes from 59 to 209, this increases the optimal extrac-
tion with 2 units (when the initial price parameter state is 6). If the price parameter in-
creazes with one unit (one standard deviation), this leads to the same result.

Fig. 10. The optimal extraction level as a function of the price parameter and the second
order derivative of the profit function m, = = 100h 4+ BA®. When the profit function
is strictly concave (B < 0), it is optimal to distribute the harvest quantity between differ-
ent years even if there are price differences. The optimal harvest level is a slowly increas-
ing function of the price parameter. This is called continuous extraction. However, if
the profit function is linear or even strictly convex because of economies of scale (B = 0),
then it is optimal to harvest everything during one period. This strategy is called pulse
extraction and the relevant approach is optimal stopping theory. Then, if the price param-
eter belongs to the continuation region (<35), it is optimal to save all of the resource
at least one more period. If the price parameter belongs to the stopping region (= 6), all
of the resource should instantly be harvested.
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Fig. 9 illustrates the sensitivity of the optimal supply function to the rate of interest
in the capital market. It is clear in the example that normal changes in the rate of
interest do not necessarily affect optimal supply more than normal price changes.
In deterministic models where stochastic price changes are completely ignored, the
effects of changes in the rate of interest are the main object of analysis. This model shows
us that small shifts in the demand function may have a greater impact on optimal
harvesting. From this standpoint, the relevance of the deterministic resource manage-
ment optimization models is questioned.

Fig. 10 is interesting because it demonstrates the relations between the two control
approaches optimal stopping theory and continuous optimal control. If the profit
function in each period is strictly concave, there is an incentive to keep a smooth harvest
path. In other words, the resource quantity should be more or less evenly distributed over
the years irrespective of small price changes. Deviations from the “optimal” harvest
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Fig. 11. The expected present value is an increasing function of the size of the entering
stock and a decreasing function of time. As time goes, less periods remain, which implies
less options to get good price parameter states. Furthermore, since the profit function is
strictly concave, it is favourable if the harvest quantity can be distributed over many
remaining periods. This way, the marginal contribution of each harvest unit to the objec-
tive function increases.
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level are expensive. However, in some cases, the profit function may be linear or even
convex. If there are economies of scale in harvesting operations, which is frequently
the case in forestry, then it is generally optimal to harvest all of the resource during
one period. Fig. 10 illustrates this phenomenon. If the profit function is strictly concave,
then the harvest level is not very sensitive to the price during a particular period. If
the profit function is linearor strictly convex, an optimal stopping strategy can be defin-
ed as follows. If the price exceeds the optimal stopping boundary, the price belongs to
the optimal stopping region and all of the resource should instantly be harvested. If
the price is below the optimal stopping boundary, then it belongs to the continuation
region. All of the resource should be saved at least one more period. A so called bang-
bang policy is optimal. Harvest all or nothing.
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Fig. 12. The optimal extraction level is an increasing funetions of the price parameter and
the size of the entering stock

Fig. 13. The optimal expected present value W*isa (strictly) convex function of the price
parameter. The logic behind this result is shown in Fig. 5
Furthermore, W#* is an increasing function of the entering stock.
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Tig. 14. As time goes, more and more harvest options are lost. Remaining harvest options
are valuable because the price parameters may be favourable in future periods and because
it is optimal to distribute the harvest quantity over many years when the profit function =
is strietly concave.
Fig. 15. As time goes, the number of remaining periods (when the resource may be profi-
tably harvested) decreases. Hence, the optimal harvest level (for a particular price param-
eter and entering stock) increases with time,
3. Discussion

Hopefully, this paper has contributed to the understanding of the fundamental rules
of optimal harvesting in a stochastic environment. It has been possible to describe and
solve problems from applied optimal stopping theory and optimal control within the
framework of one simple model. The author has the strong opinion that it 1s necessary
to use numerical models as complements to analytical models, because, as discussed
also in the introduction, normative problems are almost always quantitative problems.
Furthermore, it is easy to investigate the importance of new and more relevant, model
agsumptions throngh numerical modelling. Hopefully, the results presented in this
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paper will have a direct influence on future harvest planning. Hopefully, remaining
problems within this area can be solved using developments of this approach and
the included optimization program.

Appendix

This appendix includes the stochastic dynamic optimization program for adaptive
extraction (ADAPTEXT) used in the construction of the Figs. 8-15 in the main text.
The Table of used parameters is also given in the final section. A typical program appli-
cation follows the computer code as an illustration.

10 LPRINT" "

20 LPRINT" ++++++++++++++++++=+-+"
30 LPRINT" ADAPTIVE RESOURCE EXTRACTION"

40 LPRINT" Lohmander Peter 880304

50 LPRINT" +4++++4+++++4++++++++44+"

60 DIM WMAT(9, 100), TRMAT(9, 9), FIMAT(9, 100), HMAT(9, 100)

70 DIM FDEV(11), WMAT2(9, 100), X(20)

80 REM

90 REM GENERAL PARAMETERS

100 REM

110 INPUT"THE PLANNING HORIZON 1S ', TTOT

120 INPUT"THE RATE OF INTEREST I3 '.R

130 INPUT"THE ENTERING STOCK IS ?',Q0

140 INPUT"THE LAND VALUE IS ?",LANDV

150 LPRINT"HORIZON = ";TTOT;" RATE OF INTEREST = ";R;"' ENTERING STOCK =
";Q0

160 LPRINT"LAND VALUE = ";LANDV

170 REM

180 REM RESOURCE DENSITY AND PROFIT FUNCTION PARAMETERS

190 REM

200 INPUT"FIX PROFIT = ",PPARO

210 INPUT"PPAR1 =" PPARI]

220 INPUT"PPAR2 = ",PPAR2

230 INPUT"PPAR3 = ",PPAR3

240 LPRINT" PROFIT FUNCTION PARAMETERS = ";PPARO;PPAR1;PPAR2;PPARS3
L0 ERINT o e st pok o et

260 INPUT" FIX DENSITY = ",GPARO

270 INPUT" FIRST ORDER DENSITY PARAMETER = ".GPAR1

280 INPUT"SECOND ORDER DENSITY PARAMETER = ",GPAR2

290 INPUT" EXPONENTIAL DENSITY PARAMETER = ", GPAR3

300 LPRINT"DENSITY FUNCTION PARAMETERS = ":GPARQ;GPAR1;GPAR2;GPAR3
310 LPRINT" "

320 LPRINT" THE PROFIT AS A FUNCTION OF THE EXTRACTION VOLUME"
330 LPRINT" (THE LAND VALUE IS XOT INCLUDED, P IS IN EQUILIBRIUM
ANDT = ()"

340 LPRINT" "

350 FOR H=0TO 20

360 PROFIT=PPARO - PPAR1 xH } PPAR2xH xH - PPAR3xH xH xH
370 LPRINT" EXTRACTION VOLUME = ";H;" PROFIT = ":PROFIT
380 NEXT H
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390 LPRINT" "

400 REM

410 REM PRICE PROCESS PARAMETERS

420 REM

430 INPUT"AUTOCORRELATION PARAMETER (0 — 1) = ",PRPAR2

440 PRPAR1=5%(1-PRPAR2)

450 PRSTDEV =1 :

460 INPUT"STANDARD DEVIATION IN PRICE PROCESS = ".PRPAR4

470 INPUT"DETERMINISTIC TIME TREND IN PRICE IS = ".PRPARS

480 LPRINT"STDV IN PRICE PROCESS = ";PRPAR4;" TIME TREND = '";PRPARS

490 LPRINT"AUTOCORRELATION PARAMETER = ";PRPAR2

b00 LPRINT'

510 REM

520 REM CALCULATION OF PRICE INDEX TRANSITION PROBABILITY MATRIX

30 REM

540 FOR DI =1 TO 11

550 DEV = DI—-1

560 FDEV(DI) = 1/(2%3.141593 «PRSTDEV ~2) ~ .0 * EXP(—DEV ~2/2/PRSTDEV ~ 2)

570 NEXT D1

530 FORPO=1TO 9

590 EP = PRPAR] - PRPARZ xP0

G600 FORP1=1TO 9

610 DEV = ABS(P1—EP)

620 DI = DEV - 1

#30 TRMAT(P1,P0) = FDEV(DI)

640 NEXT P1

600 REM

360 REM CORRECTION FOR TRUNCATION, REFLECTING BARRIERS AND DISCRETE
SPACE

670 REM

(80 PROBTOT = 0

830 FORP1=1TO 9

700 PROBTOT = PROBTOT 4 TRMAT(P1,PD)

710 NEXT P1

20 FORP1=1TO 4

730 TRMAT(P1,P)) = TRMAT(P1,P0)/PROBTOT

740 NEXT P1

760 NEXT PO

760 LPRINT” PRICE STATE TRANSITION PROBABILITY MATRIX "
770 LPRINT" row = P(t+1), column = P(t)"

780 LPRINT"
790 FOR P1 = 1TO 9

800 FOR P = 1 TO 9

810 X(P0) = TRMAT(P1,P0)

820 NEXT PO

830 LPRINT USING" 34 4544 X (1);X(2)5X(3);X(4) :X(5) X (6):X(7):X(8) :X.(9)

840 NEXT P1

850 REM

860 REM DEFINITION OF WMAT2(P,V) (= 0 FOR ALL P, V) IN THE FINAL PERTOD
870 REM

880 FORP = 1TO 9

890 FOR V = 1 TO QO
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900 WMAT2(P,V)=0

910 NEXT V

920 NEXT P

930 REM

940 REM STOCHASTIC DYNAMIC PROGRAMMING VIA THE BACKWARD ALGORITHM

950 REM

960 FOR 8 = 1 TO TTOT

90 T=TTOT — S+ 1

980 DENSITY = GPARO + GPAR1 %T 4 GPAR2xT*T + GPAR3~T

990 LPRINT" "

1000 LPRINT' 3¢ 3 3 % % 3% 3 3 % 5% THE PERIOD IS ";T;" 5 3% % % % % % ¥ % ¥ % X % %

1010 LPRINT" DENSITY I8 ";DENSITY

1020 REM

1030 REM SELECTION OF THE OPTIMAL EXTRACTION LEVEL FOR EACH (P.V)

1040 REM

1050 FOR PIND =1TO 9

1060 FOR VOLIN = 1 TO Q0

1070 PRMAX = 0

1080 HOPT = 0

1090 FOR H = 0 TO VOLIN

1100 YOLOUT = VOLIN — H

1110 G=H *DENSITY

1120 W = WMAT2(PIND,VOLOUT)

1130 PR = PPARO - (PPAR1 4 PRPARS}-PRPAR4 %(PIND—5)) #G + PPAR2 %G *G
PPAR3 %G %G %G

1140 PR = EXP(—R *T)%(PR + H*LANDV) - W

1150 IF PR > PRMAX THEN HOPT = H

1160 IF PR > PRMAX THEN PRMAX = PR

1170 NEXT H

1180 FIMAT(PIND,VOLIN) = PRMAX

1190 HMAT(PIND,VOLIN) = HOPT

1200 NEXT VOLIN

1210 NEXT PIND

1220 LPRINT" *

1230 LPRINT"THE OPTIMAL EXTRACTION STRATEGY MATRIX HMAT(.) IN PERIOD
o

1240 LPRINT"'row = entering stock (1 — Q0), column = price state (1 — 9)"

1250 LPRINT" "

1260 FOR V =1 TO Q0O

1270 FOR P=1TO 9

1280 X(P) = HMAT(P.,V)

1290 NEXT P

1300 LPRINT USING" fh4F" ;X (1) X(2);X(8) ;X (4);X(5):X(6) ;X (7) ;X(8);X(9)

1310 NEXT V

1320 REM

1330 REM DETERMINATION OF THE EXPECTED VALUE MATRIX. NAMELY WMAT
(P.¥)

1340 REM

1350 FOR PO =1TO 9

1360 FOR VOLIN = 1TO QO

1370 WMAT(PO,VOLIN) = 0
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1380 FOR P1 =1TO 9

1390 WMAT(PO,VOLIN) = WMAT(P0,VOLIN) -+ TRMAT(PL,P0} *FIMAT(P1,VOLIN)
1400 NEXT P1

1410 NEXT VOLIN

1420 NEXT PO

1430 REM

1440 REM PRINTOUT OF THE EXPECTED PRESENT VALUE MATRIX WMAT(P,V)

© 1450 REM

1460 LPRINT" "

1470 LPRINT"THE EXPECTED PRESENT VALUE MATRIX WMAT(.) IN PERIOD ";T
1480 LPRINT"row = entering stock (1 — Q0), column = price state (1 — 9)"

1490 LPRINT" "

1500 FOR V =1 TO QO

1510 FORP=1TO 9

1520 X(P) = WMAT(P,V)

1630 NEXT P

1540 LPRINT USING" $ehab4F." X (1) X(2):X(3); X (4):X(5):X(6) :X(7); X(8);X(9)

1660 NEXT V

1660 REM

1570 REM BEFORE A CHANGE IN PERIOD, WE LET WMAT(P.V) REPLACE WMATZ2(P,V)
1580 REM

1590 FORP=1TO 9

1600 FOR V =1T0O QD

1610 WMAT2(P,V) = WMAT(P,V)

1620 NEXTV

1630 NEXT P

1640 NEXT S

1650 STOP

R A e e e o e
ADAPTIVE RESOURCE EXTRACTION
Lohmander Peter 230304
e s S e e e e e o o
HORIZON — 2 RATE OF INTEREST — .05 ENTERING STOCK = 10
LAND VALUE = 10
" PROFIT FUNCTION PARAMETERS = 0 100 —10 0
DENSITY FUNCTION PARAMETERS = .9 .1 0 0

THE PROFIT AS A FUNCTION OF THE EXTRACTION YVOLUME
(THE LAND VALUE IS NOT INCLUDED, P IS IN EQUILIBRIUM AND T = 0)

EXTRACTION VOLUME = 0 PROFIT = 0
EXTRACTION VOLUME = 1 PROFIT = 90
EXTRACTION VOLUME = 2 PROFIT = 150
EXTRACTION VOLUME = 3 PROFIT = 210
EXTRACTION VOLUME = 4 PROFIT = 240
EXTRACTION VOLUME = 5 PROFIT = 250
EXTRACTIOX VOLUME = 6 PROFIT = 240
EXTRACTION VOLUME = 7 PROFIT = 210
EXTRACTION VOLUME = 8 PROFIT = 160
EXTRACTION VOLUME = 9 PROFIT = 90
EXTRACTION VOLUME = 10 PROFIT = 0
EXTRACTION VOLUME = 11 PROFIT = —110
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EXTRACTION VOLUME = 12 PROFIT = —240
EXTRACTION VOLUME = 13 PROFIT = —390
EXTRACTION VOLUME = 14 PROFIT = —560
EXTRACTION YOLUME = 15 PROFIT = —750
EXTRACTION VOLUME = 16 PROFIT = —93i0
EXTRACTION VOLUME = 17 PROFIT = —1190
EXTRACTION VOLUME = 18 PROFIT = —1440
EXTRACTION VOLUME = 13 PROFIT = —1710
EXTRACTION VOLUME = 20 PROFIT = —2000

STDV IN PRICE PROCESS = 30 TIME TREND = 0
AUTOCORRELATION PARAMETER = .5

PRICE STATE TRANSITION PROBABILITY MATRIX
row = P(t+4-1}, column = P(t)

0.054 0.007  0.004 0.000 0.000 0.000 0.000 0.000 0.000
0.243 0.090  0.05¢ 0.607 0004 0000 0.000 0000 0.000
0.401 0.403 0.242 0.090 0.054 0.009 0.004 0.000 0.000
0.243 0.403 (399 0403 0.242 0090 0.054 0.007 0.004
0.054 0.090 0.242 0403 0.3%9 0403 0.242 0090 0.054
0.004 0.00v 0.054 0.090 0,242 0.403 0.399 0.408 0.243
0.000 0.000 0.004 0.007 0.05¢ 009 0.242 0403 0401
0.000 0.000  0.000 0.000 0.004 0.007 0.054 0.090 0.243
0.600 0.000  0.000 0.000 0.000 0000 0.004 0.007 0.054

3 3% ¥ 3% THE PERIOD IS 2 3¢ 3 5 56 36 3 96 26 3 36 3 3 2 X 3 %
DENSITY IS 1.1

THE OPTIMAL EXTRACTION STRATEGY MATRIX HMAT(.) IN PERIOD 2
row = entering stock (1 — QU), column = price state (1 — 9)

THE EXPECTED PRESENT YVALUE MATRIX WMATY{.) IN PERIOD 2
row = entering stock (1 — Q0), column = price state (1 — 9)

40, 53. 68, 83. 98. 113. 127, 142, 157.
62, 86. 115, 144, 173. 203. 233. 2463. 202,
7. 101. 142, 183. 298, 272, 317. 362, 403,

73. 105. 155, 203. 261. 319. 379. 438, 496,
4, 106, 160, 211. 279. 346. 420, 493. a66.
74, 106. 161, 213. 257. 3568. 443. 527. 614,
4. 106. 161. 214. 288. 361. 453. o44. 643.
4. 106. 161. 214, 289, 362, 45H6. 549. 656.
T4 106. 161. 214, 289, 362. 457. 5o, 661.
4. 106. 161. 214. 239, 362. 457. 550. 662,
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¥ ¥ %% THE PERIOD IS 1 3636 5 5 3 9 5 36 3 50 3 % % %936 %
DENSITY I8 1

THE OPTIMAL EXTRACTION STRATEGY MATRIX HMAT(.) IN PERIOD 1
row = entering stock (1 — Q0), column = price state (1 — 9)

OSStEsf=-gi=f o
A0 1 ]2 88
911 292 9 3 3
g L 13 2273 4 3
1 B2 333 &£ &
D 1 2.5 58 § 4 4 a4
g 1 2 3 4 4 4 b B
b 2 4 4 K5 5 B
Befe P d 5 K 56 6
(S R R G T (ol

THE EXPECTED PRESENT VALUE MATRIX WMAT(.) IN PERIOD 1
row = entering stock (1 — QU), column = price state (1 — 9)

68. b. 83. a1. 102, 112, 125. 138. 152.
118. 134. 153. 1%2. 194, 215. 239. 262, 288,
157. 182. 212, 241. 274. 306. 342 377, 413.
136. 221, 262, 302. 346. 589, 435, 481. 228,

- 208. 251. 302. 352, 406. 461. 518, 895, 633.
224, 273. 333. 393, 468, h22. 590. 658, w27,
233, 2841. 306, 423, 499, 575. 654. 733, 812.
238, 295. 371. 446. 531. G16. 106, 795, 886.

241. 300. 361. 451, 5566. 649. 750. 849. 950,
243. 303. 388, 472. 54 674. 784, 893. 1005,
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Table. The numerical cases. This table shows the parameters used in the construction of
some of the graphs (Figs. 8-15) in the main text. The parameters in the columns >1 are
the same as those in column 1 if no other value is given in the Table

PLANNING HORIZON 5 10

RATE OF INTEREST .05 10 .20
ENTERING STOCK 50

LAND VALUE 10

FIX PROFIT, 0

PPARY 100

PPAR 2 -5 "-10|0] 2
PPAR 3 0

FIX DENSITY 97

1 ORDER DENSITY PAR | 03
2 DRDER DENSITY PAR
EXP DENSITY PAR

AUTOCOR PAR 5
STDEV PRICE PROC RES | 30| 0 B0
DETERM PRICE TREND | O

Fig. 8 %1% X
Fig. 9 X % X
Fig. 10 X vl gl x
Fig. 11 X
Fig. 12 X
Fig. 13 X
Fig. 14 : X
Fig. 15 X%
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Book Review

Baxgs, S. P.: Mathematical Theories of Nonlinear Systems. Prentice Hall International, New
York-London-Toronto-Tokyo 1988, 345 pp.

In recent textbooks and books on system theory linear systems are described, only, for which the
mathematical apparatus is well developed and prepared for engineering application. But the most
practical systems are nonlinear and require nonlinear methods for their effective handling (analysis
and synthesis). At present a systematic, general theory of nonlinear systems like the linear one does
not exist: Either the nonlinear system is simply linearized or a developed nonlinear method only
refers to quite a special system.

This book represents a first approach towards a systematic, general theory of nonlinear systems
in a range similar to that of linear systems. Therefore it is of great interest although it is restricted
to deterministic systems described by ordinary differential equations z = f(z, u), y = s(z, u) in the
state space (u: vector input including state depending inputs, z: state vector, y: output vector).
The book requires some deeper mathematical knowledge summarized in chapter 1 (Differentiable
manifolds, Lie Groups, Lie algebras, ...) which is to be completed (especially from the engineer) by
additional mathematical textbooks (references are given).

The second chapter represents and proofs conditions for such fundamental properties of nonlinear
systems as controllability, observability, invertibility, ete. known from the linear systemtheory.
The third chapter represents and proofs general conditions for the global linearization by a diffeo-
morphic change of variables. The tensor representation of nonlinear systems is described more deeply.
On this basis a wide class of nonlinear systems can be described by bilinear systems. which are
described in chapter four. The used here Volterra expansion series allows the extension of the appli-
cation of the well known from the linear system theory Laplace- an Fourier transforms to nonlinear
syatems.

The last chapter 5 presents an introduction to nonlinear distributed parameter systems.

The book gives a good and systematic overview of the literature up to 1986. in this field. The new
quality is the systematization. The given simple examples are helpfully for better understanding.
The concentration on bilinear systems (with possible difficulties with the infinite dimensions) is
restrictive but it demonstrates the state of the art of this field.

The book is more directed to mathematicians with interest in technical applications. The required
mathematical level seems to be a bit to high for engineers understanding.

Nevertheless, the book is a very good first step to a general, systematic theory on nonlinear systems
and should have its place in libraries of institutes locking for engineering solutions of control preblems
coneerning nonlinear plants.

N. AHLBEHRENDT



