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Optimal Resource Control in Continuous Time
without Hamiltonian Funetions

P. LOHEMANDER

Swedish University of Agricultural Sciences, Umed, Sweden

The optimal intertemporal control {extraction or harvest) problem which arises in resource manage-
ment has earlier been analysed in continuous time by the use of Hamiltonian functions and classical
optimal control theory. This paper presents a convenient alternative to that approach. The constrain-
ed optimization problem is formulated in discreve time. The Lagrange function is constructed and
the first order optimum conditions are derived. From these and the dual variable, the optimal control
path is determined. A similar method can be used also in continuons time since the periods may repre-
sent time intervals that approach zero. The dual variable is determined via the resource constraint
and integration over time. Thanks to the use of classical constrained optimization, the second order
maximum conditions are easily investigated and it is often simple to verify that the solution is a
unique maximum. One application to forest harvesting and one to oil ficld extraction are analysed.
A computer program based on the analytical results is included and used in the applications.

1. Introduction

1L, General Introduetion

The optimal intertemporal control (harvest or extraction) problem which arises in
resource management has earlier been analysed in continuous time by the use of Hamil-
tomian functions and classical optimal control theory. This paper presents a convenient
alternative to that approach. Furthermore, two typical applications to resource manage-
ment will be discussed.

The problem under investigation is the following: You own a natural resource and
the optimal extraction (harvest) level should be determined as a function of time.
Depending on the situation, different methods are possible. Some general properties
of the problem must always be taken into consideration.

1:2; Basie Considerations

The first question is if the resource grows (renewable) or not (nonrenewable or ex-
haustible). Secondly, we want to know the nature of the profit function: Do we affect
the price level through our supply or can we regard the price as an exogenous parameter ?
Do we buy the input factors on perfect markets or do we affect the factor prices through
our activities 2 1s the marginal cost affected by the extraction (harvest) level or/and the
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size of the resource stock ? In most papers in the field, rather strong assumptions con-
cerning these questions are often made without much discussion. A nice presentation
of many central problems and the economic implications can be found in CrLark [2]
and in JoHANSsON und LorFGrEN [6].

1.3. Deterministic or Stocﬁastic Methods

One very important question is the following: Is it possible to predict the price and/or
growth in the future ? Is the assumption of a deterministic environment really relevant ?
If this is not the case, it is in most situations better to use the latest information in the
decision process. The final decisions should be made as late as possible and no detailed
long term planning should be performed. This is called adaptive optimization. The mathe-
matical theory of stochastic optimal control can be found in FLEMmNG and RIsHEL [4].
An introduction to some of the economic implications are presented by Hey [5]. Adap-
tive optimization applications to resource management are discussed by NorsTrROM
[10], Risvanp [11] and LoEMaNDER [7, 8 and 9] among others. The reader should be
aware that adaptive optimization generally leads to much better results than deter-
ministic optimization when the price and growth processes are in fact not deterministic
(and the deterministic method is used as an approximation).

However, the deterministic control approaches (discussed in this paper and elsewhere),
may be applied in situations when good forecasts are possible. Furthermore, they serve
as convenient analytical tools in the discussion of intertemporal resource problems.
But, since the adaptive models generally are more relevant, one should not hesitate to
consult the more difficult adaptive optimization approach in important cases.

1.4. First and Seeond Order Properties

This paper presents an analytically convenient and powerful method of deterministic
optimal control in continuous (and discrete) time and applications to intertemporal
resource extraction (harvesting). It 1s based on classical constrained optimization.
Hence, the solution has important and well known analytical properties. For instance,
it is easy to investigate the second order maximum conditions. In many cases, the
derived solution is easily shown to be a unique intertemporal maximum.

In resource management applications of classical optimal control theory with Hamil-
tonian functions, the necessary (first order) conditions are used to derive the optimal
time path of the harvest. It is frequently difficult to show that the derived solution
really is a maximum (or even a unique maximum). The existence of optimal controls
i resource problems is discussed by CLARK [2, p. 168] and the general control problem
by Berkovirz [1, Corollary 5.1., p. 67]. Clark, following Berkovitz, states that: “If
the integrand g(z, t, u) (corresponding to the profit m(h(f)) in this paper) is concave
dounward as « function of u (corresponding to the extraction or harvest level hit) in
this paper), then un optimal control (in the usual sence) exists.”

Note that this is not always true, at least not if the resource grows in the more general
manner, suggested in this paper. Then, in order to show that the control derived from
the first order optimum conditions really is a (unique) maximum, we must show that
the objective function IT, the time integral of x, is (strictly) concave in A(¢) for all .
This is generally much more difficult, since the properties of the growth function enter
the derivations. Tt is quite possible that z(l) is concave in A(t) and that IT is strictly
convex in /(¢) in the same problem! 4(¢) will generally affect the growth until the follow-
ing period £+ 1 through a nonlinear, concave or convex, relationship. This, in turn,
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will affect IT through k(¢ + 1) and hence m=(h(t + 1)). Thus, I7 may be strictly convex
in h(t), depending on the growth function, even if x is strictly concave in k().

These questions are discussed when the growth is governed by a controlled stochastic
Markov diffusion process by LorMANDER [9] and solutions are derived in particular
cases. Some references on convexity/concavity questions and intertemporal optimiza-
tion methods applied to forest harvesting are presented by Varsta [12].

1.5. Other Improvements

One novelty of this paper is that the resource is introduced in the shape of a general
intertemporal resource constraint. This is a strong generalization of classical approaches
where the resource dynamics is described by a controlled Markov diffusion process.
The Markov specification is no longer necessary (even though the author admits that
Markov models may be relevant in many cases).

An important feature of the new approach is that modifications easily are intro-
duced. New restrictions and activities can be included and the relevance of the method
may hence increase in particular normative cases.

2. Analysis

The structure of the analysis is the following. The optimization problem is defined in
the mathematical appendix. There, the connections between discrete and continuous
time are explicitly discussed. The optimal control path and the marginal resource value
are derived as explicit functions of the parameters. In the calculations, the first order
optimum conditions are used. The second order conditions show that the derived solution
is a unique maximum.

In the numerical appendix, a computer program is included, which is based on the
analytically derived results. Two natural resource management applications are specified
in Section 3; CASE 1 is a nonrenewable resource problem and CASE 2 is a forest harvest-
ing problem. Graphs derived from the computer program are used in Section 5 in the
discussion of the optimal solutions and the sensitivity to the parameters.

3. Two Important Applications

3.1. The Case of the Nonrenewable Resource (Case 1)

We consider the problem of deciding the optimal extraction of a resource over time.
The stock of the resource at time 0 is @,. The resource should be extracted between
time 0 and 7. There is no growth. Hence, the time integral of the integrand A(¢), the
harvest level, from 0 to 7 should be equal to Q. This is illustrated in Fig. 1. Of course,
the optimal choice of A(t) is dependent on all parameters in the problem. There is an
infinite number of possible functions k(t). Mathematically, the problem is stated as:
T
Max IT = | e~ a(k(t) de

G
r i
st. [ Ry dt=Q,
0

where [7 is the present value of all extraction, r is the rate of discount in the capital
market, A(¢) 1s the extraction (harvest) level and () denotes the profit gained at time ¢.
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Fig. 1. The harvest h(t) as a function of time. CASE 1, an exhaustible resource

3.2, The Case of Forest Harvesting (Case 2}

This case may be considered as a generalization of CASE 1. We assume that the growth
rate of the stock which has not yet been harvested is constant.

This may be a correct description of a forest where the tree age is almost the same in
all parts of the area and other conditions are held constant. The relative growth does
not change very much during the period of consideration. All harvests are performed as
clear fellings. Clearly, the growth in one part of the area is not affected by the size of
the stock in other parts of the area. (Stock dependence is generally assumed in the growth
process in applied control theory. That may be relevant in case harvesting is performed
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Fig. 2. The harvest k(i) and the “released land™ £(t) as function of time. CASE 3 a
renewable resource




LomMaNDER, P.: Optimal Resource Control 425
through thinnings.) CASE 2 is different from CASE 1 also because the land typically
has a value in the production of new tree generations. We may consider a value of the
land occupied by the resource in CASE 1 too. However, that value must then be based
on something else than new production of the “nonrenewable™ resource in question.
Since the forest (stand density) grows, the land area “released” per harvested unit
(cubic metre) is a decreasing function of time. Mathematically, CASE 2 is formulated
as:

Max IT = f e™ ™ m(h(t), 202) dt, Q(8) = gath(t)
0

£ (<)
st [oth(dt=¢,, 0 <a < 1.
u

The definitions are the same as in CASE 1. Q(¢) is the land area released after harvest
and  is a parameter (consistent with a constant growth rate). Clearly, the simple growth
assumption could be generalized. This will however not be made here. The fundamental
properties of (and differences between) CASE 1 and CASE 2 are illustrated in the Figs. 1
and 2 respectively.

4. The Properties of the Profit Funetion
P acC Q&
'3h ' an
A
ac
150 — dh
100— p
] AR
50 ah
-
0 T T T T | T T T 1 | » h
0 50 100

Fig. 3. Price, marginal cost and marginal revenue. P(h) = 150 — .5k, C(h) = F + (50 +-
Bh) by R(h) = P(h) L = 150k — .3k
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In order to make the discussion and the caleulations Inore specific, we assume that the
profit function x(A) is derived from the price and cost conditions found in Fig. 8. There,
the “base” parameters to be discussed and deviated from in the numerical analysis are
shown. The price of the product, P, is a linear function of the supply from the enter-
prise, . The marginal cost C( k) is a linear function of the harvest (extraction) volume .
In most cases, P'(h) < 0 and C'(h) > 0. Ii(k) denotes revenue, and is equal to P(h) h.
Of course, the profit z(A) becomes g quadratic function of A,
7i(h) = P(h) b — C(B).
If we make use of the numerical details, we find that (F denotes the fix cost):
(k) = (150 — 5R) A — F — (50 + .5%) k
w(h) = 100k — 2 — B,
The profit is illustrated as g function of the harvest level and the fix cost in Fig. 4.

Clearly, the optimal value (if we only consider this particular period) of x is 2500
This is obtained also through the first order optimum condition (one period optimum!):

(k) = 100 — 24 = 0.

P(h)h-c(h)
A

2500

3 F=0
0 - I I T T T T T \ ] = 1]
/!3 20 30 40 50 &0 70 80 100

F= 1000
-1000

Fig. 4. The profit as a function of the production level. a(h) = P{h) b — Cih) = —F 4
100 2 — a2
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Obviously, the harvest level must be 50 units when = reaches the maximum. This is
true in the graph. It is easily found that m(h) is strictly concave in A!
n''(h) = —2< 0.

This is also consistent with the graph and malkes sure that there is only one unique
maximum in the one period problem.

5. The Optimal Selutions

In this section, the optimal extraction (or harvesting) strategy is investigated through
optimization via the computer program included in the numerical appendix. The com-
puter program is based on the analytical derivations to be found in the mathematical
appendix. (In the graphs and the computer program, the upper case letters 4, B and G
replace the lower case letters a, b and g, used in the derivations, for technical reasons.)
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Fig. 5. The optimal harvest path A*(¢) as a function of the concavity of the profit function.
CASE 1, an exhaustible resource. The growth rate — (0 and the land has no value. ={k) =
—F +4 100k + BR?, x — 1{x = .9999), 8 = .96, @, =100, @ =0, T =10
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Fig. b shows the optimal harvest level in CASE 1 as a function of the concavity of
the profit function, (k). Since CASE 1 represents a situation without growth, the
Initial resource @, is identical to the total extraction over the time interval. (If the growth
rate is zero, x = 1. However, in order to avoid division by zero, welet o — 1 (x = .9999).)

p
This can easily be checked in the graph ( [ h(t) dt = &= 100). If 7 is not very concave,
' i

(B = —1.2), it is optimal to extract much in the beginning of the period and little in
the end, since the rate of interest is positive (§ = e~" < 1), In fact, if 7 would have
been linear in A, then it would have been optimal to extract all of the resource at ¢ — 0.
When = becomes more concave, it is optimal to distribute the extraction more evenly
over the years. Deviations from the “ideal” (optimal with respect to the period in ques-
tion only) extraction level become more costly. In the most concave case (B = —4.8),
the optimal extraction level is almost a constant (=10). Fig. 5 also includes information
concerning the marginal resource value, the optimal dual variable 1*. It is found that
A* is an increasing function of B( because when B Increases, then the marginal profit
of harvesting increases in each period).

Fig. 6 (CASE 1) shows the optimal intertemporal price poliey (consistent with the
extraction path demonstrated in Fig. 5) as a function of the profit function concavity.

Optimal price

A
150 1228 _ 4
- s B=- v3h )
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5 o
145 - =2 2.
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- — _,""
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4.~ o
- .p-d""
= —
gy S —— = °
130
i (B=—4.a,§{-=-2 4)
125—
120
LN SR N N B iy e s >t
0 5 10

Fig. 6. The optimal prices consisient with the production A*(t) shown in Fig. 5. CASE I,
an exhaustible resource. Compare Fig. 5
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In all cases, the price increases over the years because of a decreasing extraction level.
When the profit function x is almost linear (B = —1.2), the extraction level (and hence
the optimal price) changes very much during the period. When z is very concave (B =
—4.8), the extraction level and the optimal price are almost constant.

In Fig. 7 (CASE 2), the optimal harvest path is derived as a function of the rate of
interest (§ = e~"). As expected, we find that the present harvest level increases and the
future harvest level decreases if the rate of interest increases ( decreases). Since the
profit function x is strictly concave in &, it is not optimal to harvest all of the resource
in one period only, which would be the case in a linear world. If the land value would
have been zero, then the optimal harvest level would have been a constant (when the
growth rate is equal to the rate of interest (x — p = .95)). The qualitative result can be
found in Appendix M. 2, Remark 1. However, since each cubic metre of the forest
occupies a larger land area (and land value) in the beginning of the time interval than
later (because of growth), it is more important to harvest rapidly in the beginning of
the period than later. The gualitative result is found in Appendix M. 2, Remark 2. This

h*(t)
A
20
il
¥ g=.9999
% (W= 71.10)
15— % s
- k. .
e T <
“\/K\ 8=.9500
- e \\ (x*=56.86)
¥ 4
- %
104 5
i ~
(1"=43.87)
5_
0 T T T 1T T 71T T T 7 =t
0 5 10

Fig. 7. The optimal harvest A*(t) as a function of the rate of interest (8 = e~ ") CASE 2,
a renewable resource. (k) = —F + 100k — 242, & = .95, @, = 100, @ =10, =10
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is found in the graph: The optimal harvest level for 5 = .95 is slowly declining, The
marginal resource value 1* is a decreasing function of the rate of interest (an increasing
function of B) since discounting reduces the value of future harvesting.

In Fig. 8, the influence of the growth rate is highlighted. In short: If the growth rate
2 4
increases (o decreases), then the total harvest over the period, f h(¢) d¢, increases. If

1]

the marginal value of harvesting in different periods would not be negatively affected
by the increasing harvest level, then increasing relative growth would imply that a
larger proportion of the resource should be saved for the future. As shown in Fig. 8,
this is also the general tendency. However, since 7 is strictly concave, this tendency
does not hold completely. It is not optimal to increase the harvest level in a particular
period too much. (A*(0) decreases as a decreases from .9999 1o .95. Then, however,
2%(0) increases again when « takes the value -90.) The marginal value of the resource,
4* is an increasing funetion of the growth rate for low values of the growth rate. However,
if the growth rate increases very much, (x decreases very much), then, because of con-
cavity in 7, the marginal resource value A* decreases again.

h*(1)
A
20—
N & =.9000
- ("= 51.99)
- L A
-
— .-__-"F—
,"'.
15 ..o
T
4 :\\E ¢ =.9500
S (X'= 56.8¢)
L
10_‘ \ ‘.‘-'\
2 N R
i \\ "L & =.9800
N ("= 55.63)
] W
Bl \ ch=_ 9900
(3= 53,55)
-
|
1
o I ] T T T T T T -t
Q 5 10

Fig. 8. The optimal harvest h*(t) as a function of the growth rate. CASE 2, a renewable
resource. 7(k) = —F -~ 100k — 22, 8 = 95, Qy =100, @ =10, T =10
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Fig. 9. The optimal harvest k*it) as a function of the land value. CASE 2, a renewable
resource. (k) = —F + 100h — 24%, & = .95, B = .95, @, = 100, T = 10

The influence of the land value, finally, is demonstrated in Fig. 9. Compare appendix
M. 2, Remark 2, where the qualilative result is shown. In all of the graphs, the rate of
interest corresponds to the growth rate of the forest. Hence, if there is no land value,
the optimal harvest path is a constant. As discussed also in connection to Fig. 7, a
strictly positive land value will increase the optimal harvest level in the beginning of
the period and decrease it in the end. The magnitude of this effect is shown in the
graph. A special case is also illustrated : If the land owner is obliged to undertake expen-
sive reforestration activities (that make the present value of future forest generations
negative), this is consistent with a strictly negative land value. Then, of course, it is

optimal to reduce the harvest level in the beginning of the period and to increase it in
the future.

6. Discussion

This paper has given the following results;

a. A mathematically convenient approach to continuous (and discrete) time optimization
of intertemporal extraction (harvesting) has been developed.
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b. A computer program based on the analytical derivations has been constructed.

¢. The nonrenewable resource extraction problem has been solved and discussed through
the new method.

d. A new version of the forest barvesting problem has been defined, solved and discussed.

Some possible and important future extensions of the theory are:

e. to make the planning horizon endogenous,

f. to generalize the model assumptions concerning prices, costs and growth,

g- to derive optimal solutions to modified versions of the problems explicitly,

h. and finally to estimate the robustness of the derived results. (Are the solutions very
sensitive to the assumptions concerning deterministic relationships ? If we introduce
stochastic variables in the system which are sequentially observed, adaptive opti-

mization is the relevant approach.)
Hopefully the reader finds new areas of application of the new method.

M. Mathematical Appendix

M.1. The Problem in Discrete Time

T
max /] = ¥ e~" (HARVEST NET REVENUE,)

i=

=

+ (RELEASED LAND VALUE,))

(<)

T
st. 3 (HARVEST AREA) S (TOTAL AREA)

1=

It will everywhere be implicitly assumed that the optimal solution is an “interior solu-
tion”, which means that the harvest level is strictly positive in every time period.
If we make use of the parameter definitions (from Section 3), we get:

T
maxJT = X e~ (b + b)) + Q), (Q, = ga'hy
(=0
T
s.t. > oth, =t S
i=0

The Lagrange function becomes:

T T
L= 3 f{a+ ga') b, + bh2) + i (Qn s B .xm,:.)
=0

f=

(=1

The first order optimum conditions are:

al o

e — — th, = 0
i

¢l

= B'a + got + 2bk) — Axt =0 (for 0 <t 7T)
Ly
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M.2. The Optimal Solution in Discrete Time

Clearly, z—f = ( implies that:
t
¥ OV — (3
;= Al f) 253 oo (where * denotes the optimal value).

Hence, we must determine i*. Then, however, hf is determined for all values of ¢!

s

Now, it is easy to determine A* via the resource constraint (% — 0).

Qo = Z’wlh?'
[A* /B — a — gat
Q=2 2

2an=l*E(a2fﬁ)‘—aza‘—-g’EocE‘

A¥ can now be determined from:

. 20y +adat+ g 3 x*
B > (/B )

Hence, after summing the series, the solution is explicitly obtained :

. 1 ___(xT-E-l § {aij—i—l
1 223}@0-1—& 1 —« -I:_g 1 — 2
1 — (&2/)T+1
1 — (x2/8)
Definition.

ARY = (o — BF) = ()L [¥(@/B) 1 — (xIf)) — gla =T — oY)
Remark 1. If b < 0, 7* > 0 and g = 0, then it follows that;

e = <
o=p =4k =10
x<f >
Remark 2. If b < 0 and x = 8 < 0, then it follows that:
= <
gl=|0=4RF (= |0
< >

M.3. Second Order Maximum Conditions

The problem is to maximize a function, II(%), where % denctes the vector containing 7,
for all ¢ such that 0 < ¢ < T subject to a resource constraint. The most general approach
to the study of the second order maximum condition is to investigate the signs of the
bordered Hessian matrix (compare Curanc [3, Table 12.1 ). However, since in this appli-
cation, we know that the restriction is linear in the relevant space, it is well known
(Ciiaxc [3, p. 718]) that the resulting feasible area is a convex set and the constraint

29 BSyst. Anal. 4 (1389) ¢
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qualification of nonlinear programming is met. Then, if the objective function /7 is
(strictly) concave, the solution obtained from the first order optimum conditions is a
(unique) global maximum (Compare Crrang [3, P- 722].). Define [Dy)] as;

(e oy, M,

ot g

['Dr] = H”-‘I}ic Hhrkr > H}#Jﬂ:ﬁ -

fempliy thﬁkl HkTﬂT
Then, IT(k) is strictly concave if ;

) < 0o B,

byl bk

I, ;, 11, ,, ;Hn.ﬁ, |
1, a i 1T,

k;.’!. r‘i. lﬁr

sl 2 =110, ==,

However, in the applications of this paper and in most intertemporal economic problems,
the test of coneavity is very easy. The objective function /7 is a weighted sum of the pro-
fits in different periods, z. Hence, if the profit, =, is a concave function of the harvest
level in each period, then I7 is concave. In the applications in this paper, it is easy to
find that IT is strictly concave. Thus, we always obtain a unique global maximum
through the first order optimum conditions.

M.d. From Diserete to Continuous Time

Now, the discrete time problem will be slightly modified. We replace the original as-
sumption of T' periods by v7' periods where p 18 a positive integer greater than 1. The
new periods are denoted by s. We still assume that the total time interval under con-
sideration is (0, 7), measured in the original time scale. Each period in the new time
scale (s) represents 1/v periods in the original scale (¢). Since each period is shorter than
before, the harvest in each period contributes less to the objective function and in-
fluences the resource constraint less,

The modified problem is (the land value is not included in the following derivations):

]

oT 1
wasll = 30 afh,,) (1)
d=0

L 1Y\,
3.t. E Ck'-{'g'rﬁ)krs'rt:l (?) .‘é' Qﬂ

2= ‘

Clearly, we may replace 1/ by At. As At — 0, the objective function and the restriction
may be described as:

T
max [T = [e" 7(A(t)) e (h(t) corresponds to I,
v

T
s.t. fa;"k(éj de' = @y
u

- ela gEA T T e e e e e —_——
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M.5. The Optimal Solution in Continuous Time

o i i A

The problem in continuous time, including the land value, becomes:

Fra

foane

T
Max IT = j e~ "{(a + gat) B(t) + bh3(1)) dt
1]

(<)

i
E.t. f alh(t) dt = &

We use the method described for the discrete time case on the modified (shorter time
periods) discrete time problem, to determine h*(t). Clearly, the formula becomes the
same as in the original discrete time case also when the periods represent time intervals
that approach zero. However, i* will take a slightly different value, which in turn _
makes &*(2) slightly different from h¥:

s = &
wx(p) = 2IBY =

A convenient form of the expression in the following calculations is:

I¥(E) = (2b) [A% e IN@IR) _ g _ g ot"LN(2)].

Now, we may determine the value of 1* through the resource constraint and inte-
gration over time:

Qo = [ ath(t) dt

26Qy = —a f (o) dt + A% f(o;eez-,ch‘(a;'ﬂ)) dt — g f{x:e:'i:.mn)) de

2bQ, = —af(e‘"f“"{“’} dt + ¥ f{e(L""'r(“"’m‘L‘“‘”":} dt — g [ (eX"ENG)) 4
From this, we may solve i*:

ngﬂ —-— @ j— (EF'EN(R]} it _1!_ q f {ngmzn.v(_‘”} de
f (N CIN LNy

i =

Making use of the limits of integration 0 and 7', we find that:
. i 7

et"L.N{a)] (ez.--m'(a;j“)

9 s

2+ \ T )*5’ SLN @)
i

% 5

-2

I3 T
EEI\'{ AN ]

(LN (/)

- 1]

@

(T _ 1) 2 g 2LN ()T __ -
NG (e ) (e 1)

T 2LN &)
eELNEHT _ §

L;’\‘rtﬁaf‘ ﬂ J

2Q, +

A¥ =

@

(¥ — 1) + (BT — 1y

q
2LN ()
(27T — 1

LN(a¥B)

A% =

29+
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N. Numerieal Appendix

This program is constructed from the equations derived in the mathematical appendix.

3 LPRINT CHR$(27); "G

5 LPRINT" *

6 LPRINT"' ¢ % 3 % % *****%**%*****%***%*%*-}e*** R H K K
10 LPRINT" OPTIMAL EXTRACTION IN CONTINUOQUS TIME"

20 LPRINT" ; LOHMANDER PETER 88-02.18°

26 LPRINT" "

30 INPUT"A=",4A

40 INPUT"B =", B

40 INPUT" G =", G

50 INPUT" ALFA = ', ALFA

60 INPUT" BETA = ', BETA

70 INPUT" Q0 = *, QO

80 INPUT" T =", T

85 INPUT" PRICE INTERCEPT = ", K1
86 INPUT" PRICE SLOPE = ", K2

90 LPRINT" A=";4"B=",B;" ALFA — "; ALFA;" BETA = "; BETA
100 LPRINT" Q=";Q0"G=": G P="T

102 LPRINT" PRICE INTERCEPT = "'; K1;" PRICE SLOPE = S 6]

103 LPRINT"

110 L = 2%B%Q0 + A/(LOG(ALFA))%(ALFA T — 1)

115 L=1L + G/(2%LOG(ALFA))%(ALFA ™ (2%T) — 1)

120 L = L%LOG(ALFA ~2/BETA)/((ALFA " 2/BETA)"T — 1)

125 LPRINT" LAMBDA, THE MARGINAL RESOURCE VALUE — L

126 LPRINT" *

200 FORS=0TO T

210 H = (L*(ALFA/BETA)"S — 4 — G*ALFA "8)/(2%B)

220 P =K1 -- K2%H

225 LPRINT" YEAR = ";8;" OPTIMAL EXTRACTION = ' H;" PRICE =
.n; P

230 NEXT S

240 STOP

%%%*******************************%*******%%*
OPTIMAL EXTRACTION IN CONTINUOQUS TIME
LOHMANDER PETER 85-02.18

A =100 B = —2 ALFA = .9999 BETA — .95
Q=100 G=10 T = 10
PRICE INTERCEPT = 150 PRICE SLOPE — —1

LAMBDA, THE MARGINAL RESOURCE VALUE = 45.90353

YEAR =0 OPTIMAL EXTRACTION = 13.52412 PRICE = 136.4759
YEAR =1 OPTIMAL EXTRACTION = 12.92133 PRICE = 137.0787
YEAR =2 OPTIMAL EXTRACTION — 12.28G88 PRICE = 137.7131
YEAR =3 OPTIMAL EXTRACTION — 11.61911 PRICE = 138.3809
YEAR =4 OPTIMAL EXTRACTION — 10.91626  PRICE = 139.0837
YEAR =5 OPTIMAL EXTRACTION = 10.17G49 PRICE = 139.8235

e e o ————— ————
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YEAR =0 OPTIMAL EXTRACTION = 9.397868 PRICE = 140.6021
YEAR =7 OPTIMAL EXTRACTION = 8.578346 PRICE = 141.4217
YEAR =8 OPTIMAL EXTRACTION = 7.715777 PRICE = 142.2842
YEAR =9 OPTIMAL EXTRACTION = 6.8079 PRICE = 143.1921
YEAR = 10 OPTIMAL EXTRACTION = 5.852335 PRICE = 144.1477
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