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In several multi period decision optimization problems where the decision environment can be
modelled as stochastic processes, one can show that adaptive optimization is appropriate. The
decisions should be based on the latest available information.

This paper starts with an analytical treatment of the economic two stage industrial capacity
investment and production problem. Several new explicit results are derived with uniform and
triangular net price distributions. Some of these are: The optimal capacity level and the expected
optimal present value are increasing functions of the expected net price and of the net price risk.

When there are several stochastic processes and adaptive control options in the problem,
continuous state and decision variables, and detailed answers ar¢ needed, not many methods can be
used. The adaptive control rule parameters can however be optimized with an iterative stochastic
quasi gradient method in which the objective function sequentially is approximated by large numbers
of stochastic full system simulations.

This paper contains a discussion of this approach and a derailed forest industry enterprise example.

KEY WORDS Decision optimization, stochastic simulation, industrial capacity investment.

1. INTRODUCTION

In the discussion of a particular qualitative property of reality, a complete
analytical model should, when possible, be designed and the qualitative pro-
perties of this derived. Often, however, this is almost impossible. In several
multiperiod decision optimization problems where the decision environment can
be modelled as stochastic processes, one can show that adaptive optimization is
appropriate. The decisions should be based on the latest available information.
This kind of decision problem may often be handled numerically by discrete time
discrete state stochastic dynamic programming. Qualitative properties of solutions
may sometimes be found via continuous analytical versions of these models. The
recursive character of stochastic dynamic programming problems together with
the large, sometimes infinite, number of sequential and conditional probability
distribution calculations, make it very difficult to derive qualitative and/or
quantitative results analytically. Published results of this sort are mostly restricted
to very special classes of problems.

T This paper has been prepared as the introduction to the session “*‘Modelling and Optimization in
Science and Economic Management™ at the *“4th International Conference on Systems Analysis and
Simulation™, Berlin, August 25-28, 1992,
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This paper starts with an analytical treatment of the two stage industrial
capacity investment and production problem. Several new explicit results are
derived.

When we want to treat the more general adaptive decision problems that occur
in many applications, there are several ways open. Discrete time and discrete
state stochastic dynamic programming can be used in finite and infinite horizon
problems, infinite horizon through the use of linear programming in Markov
chains. These methods however suffer from the fact that they rely on discrete
state spaces and discrete control decisions. Methods have been proposed to
overcome the discretization problems where the objective function recursively is
approximated by smooth continuous functions. All stochastic dynamic program-
ming algorithms have the property that they finally reach the dimensionality limit.
A large table of expected objective function values at all possible multidimen-
sional state combinations must be stored in the computer memory. Furthermore,
the objective function must be additive over time, possibly multiplicative
(= additive in the logarithms). When there are several stochastic processes and
adaptive control options in the problem. continuous state and decision variables,
and detailed answers are wanted, not many methods can be used. The adaptive
control rule parameters can however be optimized with an iterative stochastic
quasi-gradient method in which the objective function sequentially is approxim-
ated by large numbers of stochastic full system simulations.

This paper contains a discussion of this approach and a detailed forest industry
enterprise example.

—Is there a reliable and practical method that can be used to optimize the more
realistic problems of some complexity in real world enterprises?

This question will be discussed in this paper.

2. ON THE OPTIMAL CAPACITY INVESTMENT LEVEL UNDER
PRICE RISK

One of the key problems in the presence of stochastic prices is to determine the
optimal industrial capacity level. When this is determined, it is necessary to take
the fact that future production will be adaptively optimized into consideration.
The future production level will be optimized conditional on the revealed net
price and the capacity level. In the following section, we will investigate a
simplified problem of this kind.

McDonald and Siegel (1985) observed that the profit is a kinked convex
function of price when there is an option to shut down production during low
price periods. Via the Jensen inequality, it can be shown that a mean preserving
increase in price risk (nonstrictly) increases the expected profit. Lohmander
(1989) claimed that future price risk may be valuable to the adaptively active
firms in natural resource sectors since: a. The production level can be adjusted to
any level between zero and maximum capacity depending on the revealed price.
b. The natural resource may be distributed between different processing plants in
the most profitable way, depending on the levels of the different product prices. It
is also important to note that if we stop production during a low price period in a
natural resource enterprise, we save the resource for future and hopefully more
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profitable periods. Hence, we should not assume that the McDonald and Siegel
approach to the investment problem reveals everything of interest, with respect to
capacity investment, to the firm active in the natural resource sectors.

Pindyck (1988) used a continuous time model with irreversible investments.
Pindyck made the assumption that production capacity can be added continuously
and incrementally. Hence, he found that there is little reason to invest before the
high prices have been observed. The conclusion drawn is that firms should hold
less capacity when future prices can not be predicted than if they could be
predicted.

In this paper, we will in the first part not only calculate the expected profit as a
function of the future price risk but also optimize the level of the capacity
investment. The effects of parameter changes will be explicitly derived. Of special
interest is that increasing future price risk implies that the optimal capacity
investment level increases. Here, it is not possible to wait for the good prices. It
takes time to build the plant. We have to invest before we observe the price
development. (Compare the completely different result derived by Pindyck
(1988).)

In the later part of the paper, a more detailed stochastic multi decision multi
period capacity investment and production problem will be discussed and
optimized via a numerical approach based on a gradient method. It may be
described as traditional “hill-climbing” where the best local moves are calculated
via approximations of the gradient. These are estimated via large numbers of
stochastic full system simulations.

3. THE CASE OF UNIFORMLY DISTRIBUTED NET PRICES

Let us start by an explicit analysis of a concrete problem. The net price
(= product price — variable production costs), p, has a uniform distribution. The
expected value of p is y, v>0. The probabilitv density of p is 1/(2m) in the
interval (y —m)<p <(y +m) and zero elsewhere. As a reasonable assumption
we introduce: m >y. This means that (v —m) <0 and that negative values of p
have a strictly positive probability. The (possible) net revenue takes place in the
future, at time ¢, since there is a delay in the investment process. The real rate of
interest is r. The cost of the capacity investment is a quadratic function of the
capacity level, k. The cost parameters are h, i and j. We will assume strictly
positive investments costs for all strictly positive investment levels and assume
increasing marginal investment costs. These assumptions can always be discussed.
In any case. we assume that h, i, and j are all strictly positive. The first stage
decision, which is here optimized, is the level of the capacity, k. The second stage
decision is the future production level. That decision follows the following rule: If
net price, p, turns out to be positive, then we produce as much as possible, which
is equal to the capacity level, k. If, on the other hand the net price happens to be
negative, then we do not produce anything. The expected present value of the
total profit at the time of the capacity decision is the objective function. This is
denoted T1.
¥+ kp

I =ik +jk1)+e—"f L g,
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We may solve the integral and write a more concenient form of the objective
function:

k(v +m)e™
4m

M= —h— k(i + jk) +

Now, we want to find the optimal level of the capacity investment k. The first
order optimum condition will be derived and used:

61’1_

ok
It turns out that the second order maximum condition is satisfied. We will find a
local maximum which is also a unique and global maximum.

&1
ok?

We may use the first order optimum condition to calculate the optimal value of
the capacity investment, k (* always indicates optimal value). We assume that the
parameter values are such that the following equations always lead to strictly
positive capacity levels. The fact that we could find an explicit function of the
optimal investment level is very practical and will be intensively used in the
following calculations.

(y o m)Ee—rr
4m

—i— 2k + =0

= -2j<0

i i (y>+2my + m)e™"

k* = —
2j 8jm

The derivatives of the optimal investment level with respect to the parameters y,
m, r, t, i and j will be given below. Thanks to the initial assumptions, most of the
signs of these derivatives are known.
If the expected value of the net price increases, the optimal investment level
increases.
ok* (y+m)e™

= - 0
oy 4jm

If the risk in the net price distribution increases (m increases) and the expected
price remains constant, then we should increase the investment level. Sandmo
(1971) used a different but related method of uniform stretching of a distribution
to describe increasing risk.

ok* _ (y +m)(y —m)e™"

= sl
om 8jm?

The optimal investment is a decreasing function of the rate of interest and of the
length of the time period until the use of the new capacity in production.

ok* t(y*+2my + m¥e ™"

or 8jm

ok* (y? ; e
oy +2m_?+m)e &0
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If we increase the marginal investment cost with a constant amount for all
capacity levels, then the optimal investment level decreases.

It is not possible to say in what direction a positive change of the quadratic
investment cost parameter will influence the optimal investment level in the
general case. Of course, if we have numerically specified parameters, this is no
problem.

ok i (y* +2my + mY)e ™™

8 2f° 8j°m

0

NIV

Now, it is also interesting to investigate how the objective function, the expected
optimal present value, is affected by parameter changes. In particular, it is
important to investigate in what direction changes in the future net price risk will
influence the expected profitability.

The partial derivative of IT with respect to the expected net price is easily
shown to be strictly positive.

& = —-rt
oIl _k*(y+m)e B
Sy 2m
However, the more important question is how IT is affected by changes in the
parameters if optimal changes in the investment level decision k take place. Thus,
we have to derive a number of total derivatives. The greek letter zeta will be used
to indicate total derivatives.

CI_SI1* | T1° ok
Cy dy Ok Oy

>0

>0 =0

We make the convenient observation that, since k is optimally chosen, the total
derivative is identical to the partial derivative. Hence we know that the expected
optimal present value is a strictly increasing function of the expected future price.
This conclusion is reasonable.

We also find that the expected optimal present value is an increasing function
of the net price risk.

LTSI k*(y —m)(y +m)e ™"

>0
Em  om dm?*

As expected, the increases in r, ¢, i and j will decrease the value of our objective
function I1. Note in particular that it was not possible to say in what direction k is
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affected by changes in j. Still, the qualitative effect concerning IT of changes in j
could be derived.

LI SI1* k*i(y +m)’e™

<0
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® #* * 2 =N

fn zéljl __k'r(y+m)e -
&t ot dm
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4. THE CASE OF NET PRICES WITH A TRIANGULAR
DISTRIBUTION

Now, the reader may wonder if the assumption of a uniform net price distribution
was critical to the strong qualitative results just obtained. One may investigate
this problem in different ways: One way is to make more general probability
distribution assumptions and to study the qualitative effects of some general form
of increasing risk. A convenient way to handle such problems has been suggested
by Rotschild and Stiglitz (1970) and (1971). Examples of how qualitative studies
of increasing risk can be made this way in connection to economic multi period
problems from the forest sector are found in Lohmander (1987a), (1988b) and
elsewhere.

In this section, we will as an alternative, analyse the problem of increasing risk
via the introduction of another kind of distribution, the triangular distribution.
There are several reasons why a triangular distribution is interesting in this case:

— It may be used as an approximation to a normal distribution.

— One advantage (or disadvantage), depending on the application, compared to
the normal distribution. is that the “tails” are finite.

— It is simple to integrate.

—One can obtain explicit formulae of the optimal investment level and the
objective function.

— One can obtain explicit formulae of the partial derivatives of interest in this
paper. It also turns out that the signs of these explicitly derived derivatives are
possible to determine.

We will use the same investment cost function as in the uniform case.

The triangular net price probability density function is determined by the
following assumptions:

The probability density has the maximum value, 1/m, at the expected price, y.
The probability density is strictly positive in the net price interval (y —m) <p <
(y+m). The points (y —m) and (y +m) mark the intersections of the
“probability density triangle™ with the “base line”, the net price line. As earlier,
we assume that y >0 and that (y —m)<<0. In the calculations, we will have to
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use two different integrals.

X . ¥ -V ¥+ Frn 1 1 ; i
[I=—(h +1k+jk2}+e‘"(J: kp( 2}+%) dp+[ kp(——;(p—y})dp)
: 5 2y

g m m

If we solve the integrals, we obtain the following expression of the objective
function:

y =3my*—3m’y —m)e "
6m?

MM=—h—k(i+jk)— i

In order to make the coming results easier to interpret, we replace m by (y + x).
According to our earlier assumptions, since (y —m) <0, we known that x > 0.

3_3 e :2_3'.-' 2o |t oo
M=k _k(iﬂk}_k(y (y +x)y* = 3(y +f) y—={yayle
6(y +x)
Let us simplify the objective function as much as possible:
k(x* +6x’y + 12xy* + 6y )e "

M= —h— k(i + jk)+

6(x + v)*
The first order optimum condition is:
ST P+ 6x%y + 12xy° + 6y )e
ok 6(x +y)°

From this, we may determine the optimal capacity investment level explicitly:
_ e "(6i(x +y)e” —x* — 6y(x® + 2xy + 1Y)
12j(x + y)*

It turns out that the second order maximum condition is satisfied. The optimum is
a global and unique maximum!

k* =

&°T1
Ok?
The qualitative comparative statics results (the signs of the derivatives) are the
same in the uniform and in the triangular cases. This is shown by the following six
equations (and inequalities). Positive changes in the expected value of the net
price or the net price risk, will increase the optimal investment level. Positive
changes in r, ¢ or i, will reduce the optimal investment level.
Ok*  (2x7 +9x%y + 9xy® + 3yP)e "
oy 6j(x +y)’
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Ok*  1(x’ + 6x%y + 12xy> + 6y*)e "
or 12j(x + y)?
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ok* 1
=——<0
i 2j
Ok* i (x*+6x%y + 12xy* + 6y’)e " =0
5 24 12j%(x + y)? =

The optimal objective function value is also affected in the same directions by
changing parameter values as in the uniform case: Positive changes in the
expected net price or the net price risk, will increase the optimal objective
function value. Positive changes in r, ¢, i or j, will reduce the optimal objective
function value.

f* o _ k*(2x* + 9x%y + 9xy? + 3y )e "
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5. CAPACITY INVESTMENT AND PRODUCTION IN THE FOREST
INDUSTRY ENTERPRISE

Of course, it is nice to be able to handle all of the capacity investment questions
analytically. Most of the questions could be answered with explicit formulae and
signs. Unfortunately, many real world capacity investment problems are more
complicated. Such a situation will be discussed below:

In Figure 1 we find a forest industry enterprise. It is active in the following way:
The wood used as raw material comes from the own forest stock (H = harvest)
and from the roundwood market (B = buy). The raw material is stored at the mill
in the roundwood stock. The raw material is processed (M = manufacturing) and
enters the product stock. Finally, the product (pulp, sawn wood etc.) is sold
(SA = sales).

The enterprise which is discussed here and the precise economic assumptions
are found in the optimization program subroutine in the numerical appendix.
Since the details of the model do not help the reader to understand the
fundamental concepts under discussion in this section and since the details cannot
be expected to be relevant in other enterprises, they are not presented in the
main text.
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Figure 1 A forest industry enterprise. The definitions are found in the main text.
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Figure 2 The hill climbing method used in the numerical cptimization of the adaptive control
parameters. & and ff denote two such parameters (in the problem, there are three parameters, namely
PPSELL, PWBUY and MMAX. The black points are positions in the control function parameter
space where the objective function, E(IT), the expected optimal present value, is estimated via large
numbers of stochastic full system simulations. You start by estimating the tangent of the iso objective
function curve. Then, you move “up the hill” using the bisection method discussed in Figure 3. When
vou can not improve the solution more in that direction, you estimate the tangent again and move
further in the new direction. Finally, you approach the top of the mountain.



‘wnwndo ann 9y) woaj Keme Jey (S10112 UONRWINSI £q Pasned
ewndo [eognie Auo are ey) eundo [eoo] ul padden aie
am 1y mof 1 Anpiqeqord ay ‘aBiel st ydua) doys enmuy ay) Ji
"SASED (ONS AUBLI UL OS[E [[9Mm $HJOM POYiat Uondasiq ay) eyl
310N ‘35]2 SUIaWos IAIASAO [IM aM ‘9aedou0d Isenb Apoms
pue poows sI uonounj aandalqo anm Ayl JI UIAD ‘Adualy
‘anjea uonauny 2A192(qo Y} Jo sARWNSI 109353d 198 01 adxa
JOU UED aMm ‘SwWalsks JNSeydoIs Yyuim Sul[eap e am 20UI§ “Ised
[Bap! ue smoys ¢ AN JBYL dIRME 2Q PINOYS IM P amaig

ssanb
|ptitug

P. LOHMANDER

(10449 Yiim)
uocljoun} pajpwiysy

uoijouny anij

()3

'$a582
Yons i [k} U)o SIATIEALIIP 1IPIO PUOIIS U0 PIseq
spoyiaw  Jaylo  1o/pue  poylow  uosydey-uoimaN
a1, "SIUoWFIs XIAUOD SUTBIUOD 11 JI OS[E dAEIUOD Isenb
Apougs st uonduny 2anda(qo ay) Ji wnwixew [eqo[3
a1 01 saf19AU0d poylaw Ayl IBY) AON UOLIAP
1811 2y} Ul anunuod nok uay [ ‘908 Aq yidusy dais ayy
sonpal pue piemydeq sdais om) aye) nok oayy “ased
a4} 10U SI SIY) JI “IN[EA UOIOUN] JSAIE] PUOIIS YL URLY)
13119Q ST 2N[EA UOLDUNJ ISAIB] Y] SB FUO| SB UOTIAIIP
p21so3dns 2y} Ul ANUNUOD NOX "D *UONIANP 1djowered
U0 UT PAIRISA[l POYIdW UONAsK] dYf, § aamdiyg

ssanb
- (LRI |

¥ —-f—




289

DECISION OPTIMIZATION

....:a.,.a_zuo%uu_._n:.,x._uc.&..m:::.muamE
oM ‘sesearoul uonelea 2o1d oyl )1 ‘seonrd 1oydiy 10] 1EM 01 puw
aanpojas adud jpnpord asow aq o1 pewndo st u fAsnoiaqQ ydesd
a1 ur umoys aie sjnsa1 uonrzZiundo Enparpul syl T1dSdd
Impweied 241 jJo suoneziumdo juasapp ¢7 w0} pajewnsd
st uonpuny 3yl ‘44 ‘eoud jonpoid ayy jo uonEAdp plEpuEls
o) Jo uonouny e st TISdd 9oud uoneasosal sapes Y, 9 aandig

00SZ 000 00SL 000L 00§ 0
ddoe | | ] | 1 |

— 000¢

00sE

ooor

‘I 0 =g "] pue o sojqeLEA )
aziumdo am *USY] ] “9|qRLIEA MU B JOMPOLIUL 01 $1 $ISBD
yons ur 20uadiaaucs jo paads oy ssordwr o) Aem auQ
‘A[SnoauElnuils pasearoul aq 1snw s@ad] Ajoeded yjoq
‘arqeigoad 2q pnoys uorsuedxa Aoedes 1 ‘uayg (a0
aY) ur udy) pue auyaew duo ur passaooad aq sy Swn
2y jo 1sow snw pnpoid W) sauas B Ul paduelie 21w
1PY1 SOUIYOBW JURIAIP JO s[aad] Aypedes ajouap ¢ pue
o uaym st ased yons su) ‘ydeid sigr ur umoys adegs ayy
aARy AR UONOUNY JANDA(QO JY) ‘aIay Apnis Japun wa|
-qoid 1epnonued oy ur jou ‘swajqoid swos ul ¢ NIy

ssanbB
1DHI]
0 - b
sjulod \

uoljow xoiddo
BAIIDALISQ

D -



P. LOHMANDER

290

‘astmJay10 ueyl saoud
npord pood £19a sounjowos are a1y J1 spnpoid 12a18p 03
aqe oq 01 wepodun a5oun s1 1] “sasearow ysu 2o1ud 1onposd oy
Ji saoud poompunos 12ydiy jdasoe pinoys apgn ‘9 20ndig asedwon)
‘dd ‘eoud jonpoid ayy Jo uoneIASD pIEpPUERIS 2Y) JO UODUN] B
se A NaMd 2oud uonealasas poompunos jewndo oy g aundiy

00SZ 000T 00SL 0001 005 0
ﬁ_n_.m....l 1 _ I | ] I

-~ — 00€
+h.?u. ¥ \4/_“3_ =

dde 0/¥Z0°0+6 68 =ANEMd

— 00F

 ANgmd

“1aded sy
ut payrodar synsar [eandjeue sepuns ay) aredwo)y suondo aoud
pood 01 Apider puodsal 01 ajqe 2q 01 aseD YSU MO[ B UI URl])
juepodwi a1ow st 31 ‘Kpeap) “Apedes nononpord ayy asearow
pInoys am ‘saseaidur uoneuea 20oud jpnpoad oy J1 "9 2undiyg
aredwo)) “dd “2aud 1onpoid 2y jo uoneiasp piepuels 2y Jo uon
-unj v se XYW Aodrded vononpoid [pumdo oy, £ aandig

00ST 000Z 00SI 000l 00§ O
dd g g s _ _ _ I _




29]

DECISION OPTIMIZATION

‘suonenba paziumdo ay) woy paunwiaap
B ANIMd PUR XVINIW 0051 S! dd JO UONBIASD pIEpURIS
Syl opqmssodwn Ajeonoerd st Ayaesuod wonouny aandalqo oy
10 159) [eond[eur uy ‘wiajqosd sigy ur payearidwon o0y i uonesd
-NsAAul 1ajoweded [euorsuawip soayl [eoUdwMU Aa(dwod v g
am3ry ur umoys uonenbs paziumdo ayy eia punoj wnwndo oy
03 asopo st wnumdo sy}, ‘uonoanp saPwered Syl Ul wNWIXEW
anbiun e 5q 0} swads a1ay ] ydeid ayy w payrewr 2w (uoneirap
PIEPUEIS JUO) SIOLID UOTIBWISS DY) "SISQunu wopues opnasd
MIU )M SUONB[MLUIS DISBYIOIS JO Iaqnu a81e] B yiim uonduny
2a193[qo a1 jo uonednssaur [ruolUAGWIP Suo v o anSig

DQ_Dm DOD_..__. QDDn
113Sdd = | [ | 1 i | _

“(usy) 25 Jou op am 2ouls) spouad
ooud mo| ) Suunp yonw £194 3so0o] Jou op pue spourad
2oud pood ay) woij Jyausq am jvY) JJON ‘g PUE / ‘g saIngiq
ur punoj suonenba oyl wWoly PaUILIAIAP Udaq dARY A NEMI
Put XVIWW “TT1dSdd Jo sonfea aqp -1aded sy wn tarzea
PRALIID U22q oaey S)nsal |eonk[eUR IRIWIS anpea juasard
pajoadxa ayy st sayBng ayy ysu aoud jonposd ayy 1aydiy
ML ‘dd ‘2oud npord ay1 jo wonemop piepues oy jo
uonouny v se anea Juasaid jpumdo papadxa oy g andiy

00ST 000 0©00SL ooOL 00 0

Qn—m..‘l | | ] | | 0
.\\..ul o

+\\ i

="k

+ =
) — ol

+\\ i

\ L.

W2 -
-~ F sl

\KA/

-~ N 9666'0 =1 -
dd¢ Opgy +1£Z¥ = (11)3 — 0T
(Ol

Y

()3



P. LOHMANDER

292

“ydes3 siyy 0 Juiproooe ospe (fewndo Afanbun you 1nq) ewndo
St ‘uoneziwndo ay) jo ymsar e se g aundig m pa1saddns A NdMd
J0 anjea ay) ‘ased Aue up "uondajas ajowered Jaquinu Wopue!
Y1 JO ISNLIAG SUONBINUIS JNSEYI0IS Y)Y UL INDO0 J0u op sadid
poompunol yiiy A1aa 1ey) 198) 24 jo a2 ue Aa9I] 1S0Ow 1 sy,
‘ydead sup ur wnwndo anbiun ou 2 0] SWaas 2dYL, ‘[ AunFig w
se Aem awes 31 Ul apew ST 153} 2y, ‘uoIsuAWIp 2oud UONEAIISII
POOMPURNOI JY1 UT UONESNSIAUL [RUOISUMWIP 2UO v Zf aanSig

00 O00F O00E 00Z 00l 0
ANGMd - _ | | ] | L | | | L 0

()3

“uoISULIIp

£iedea wononpoad ayy ut winwixew anbiun v 5q 01 swass aray |
‘01 N1 ur se Aem SWES 2U) U ApRW SI 1S3] AU “UOISUIWIP
fioeded ayy wi uoneSnsoaul [RuoisuAWIP Auo Yy [y aanig

0'l
_

€0
_

0

o

XVWW =

|
W N O N T N~

=% o
-

o

© Nz

(OL*

(1r)3



DECISION OPTIMIZATION 293
PP

4000 |

3000+

2000

300 — | ;
0] W

100

2.5 4 I

2.0+

1.5 - \

1.0+

0.5 [

0.0 = T T
|

. S

| |
| |

I 1 1 T I 1 | T
6 7 8 9 10 11 12

Figure 13 Five time series of state variables. The time unit is one month. One year is shown in the
graphs. PP = product price, PW =roundwood price, S2=product stock, Sl = roundwood stock,
F = forest stock. PP and PW are exogenous stochastic processes. S2, Sl and F are adaptively
controlled. Note that the product stock decreases only when the product price is very high. Hence, the
product stock varies considerably over the year, with a stochastic “saw-tooth pattern”.

The economic environment of the enterprise can be described the following
way: The product price (PP) is exogenous to the enterprise. It is determined by
the world market and contains dramatic fluctuations. It may be described as a
stochastic process. The roundwood price (PW) is determined by the roundwood
market where the enterprise is only a marginal buyer. Also this price can be
described as a stochastic process. PP and PW may or may not be strongly
correlated. According to Lohmander (1991b) the correlation is sometimes close
to zero.

The objective function is the expected present value. Let us discuss some of the
important economic decisions taken by the enterprise. First of all, we should
optimize the manufacturing capacity level. Note that it is not always easy to
define manufacturing capacity in a practical way. A factory is often a complicated
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Figure 14 Four time series of adaptive control decisions. The series belong to the same example as
the series shown in Figure 13. SA = product sales, M = manufacturing (production), B = amount of
roundwood bought, H = harvest. We note that the sales s a highly discontinuous activity. Production.
on the other hand, is almost constant over time. B and H take care of the roundwood consumption,
which is almost constant, thanks to the stable preduction. Hence, B and H are negatively correlated.
B is negatively correlated to the roundwood price PW. As a consequence, H is positively correlated to
the roundwood price (even if no wood is sold from the enterprise)!

unit containing several different kinds of buildings, machines, labour and
transportation facilities. In any case, we assume that we can compress the
capacity level into one variable, MMAX.

However, MMAX cannot be optimized without explicitly taking the other
decisions into consideration. We let MMAX be a variable which is held constant
during a time interval, namely from the point in time when the plant starts to
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Figure 15 The roundwood demand Figure 16 The harvest function of the

function of the enterprise as estimated
by an observer who just looks at the
observations of the year shown in
Figures 13 and 14. The function has the
traditional slope.

enterprise. Compare Figure 15.

function until the horizon of our calculations. In the numerically defined model,
we assume that the horizon is one year and that each period is one month.

Let us introduce a variable to optimize, PPSELL. This is the lowest product
price that we accept in order to sell from the product stock to the market. If the
revealed product price happens to be above PPSELL, then we sell everything that
we have in the product stock. Otherwise. we sell nothing and the product stock
level increases until the next month. Note that we implicitly assume that the
“bang-bang” sales policy (sell everything or nothing. depending on the price) is
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Figure 17 The product supply function of the enterprise. Compare Figure 15.
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optuimal. This i1s not obviously true. Depending on the ‘sales problem environ-
ment”, it is possible that more *‘smooth™ sales strategies are optimal, in particular
if there are strictly convex cost functions involved.

Finally, we introduce PWBUY. PWBUY is the maximum price that we accept
if we should buy roundwood from the market, a Kind of reservation price. Of
course, PWBUY must be optimized. We should be aware that more complicated
input market strategies may turn out to be more economical than the pure
reservation price strategy. Maybe we should also take the stock level of finished
products into account when we decide how much wood to buy? We always have
to be aware of the marginal costs and marginal revenues of more detailed and
rapid information. At least, the amount that we buy should be a function of the
amount that we have in the rounwood stock and the harvest level (H). The
precise form of this relationship may be discussed in every specific case. Clearly,’
when the harvest level should be determined, we have to consider the level of the
forest stock, the roundwood market price and the roundwood stock level.

A practical way to handle these questions is to introduce an internal raw
material market with a roughly approximated stock dependent ‘“‘shadow price
function”. This is done in the numerical model and the details can be found in the
algorithm.

The reader should be aware that Figure 1 could be interpreted as an enterprise
from some other sector of the economy, if the notation is changed accordingly.
The specific notation will however be useful since it makes it easier to explicitly
discuss different properties of the enterprise and the optimization problem.

6. DISCUSSION

In this paper, analytical and numerical methods to handle the typical economical
optimization problems of the enterprise have been presented. It was found that
analytical methods may be used in some special cases but that much more realistic
and detailed enterprise problems could be handled via a stochastic quasi gradient
method.

The suggested and introduced algorithm is a gradient method, “hill climbing”,
where the bisection method is used to determine the step length. In the objective
function estimations, the complete adaptively controlled stochastic system is
simulated a large number of times. Hence, the algorithm is not very fast. On the
other hand, the size of the needed computer memory is not very large. A typical
optimization of the enterprise example takes 30 minutes on a 386 computer.

Other methods such as stochastic dynamic programming were initially dis-
cussed. The dimensionality problem is however often strongly reducing the
applicability.

The author suggests that future efforts are directed towards the application of
the methodology to real world enterprise optimizations. Presently, one such study
is undertaken of a sawmill enterprise by Roger Berggren. There are preliminary
indications that realistic and practically interesting management guidelines will be
obtained.
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NUMERICAL APPENDIX
General

This appendix contains the computer program which has been used in the
optimization of the adaptive decision rules (IADAC8.BAS). The stochastic
enterprise problem is defined in detail in the objective function subroutine of the
optimization program. There is also a computer program which is used to
simulate the adaptively controlled system (ISIM5.BAS). Both programs are
written in QuickBasic, which is a modern version of standard basic. QuickBasic is
very similar to Fortran. The programs may be executed on a personal computer
with DOS. Examples of input and output files. screens and command files are
included.

Contents page
IADACS.bas, Program for stochastic quasigradient optimization of

several adaptive forest industry enterprise decisions. 299
INIADS.dat (input file example of IADACS.bas) 307
CIND2.bat (command file example of [ADACS.bas) 307
UTIADS.dat (output file example of IADACS.bas) 308
ISIMS.bas, Program for simulation and test of adaptive decision rules in

the forest industry enterprise. 309
First screen example of ISIM5.bas (above) 314

Second screen example of ISIMS5.bas (below) 314



DECISION OPTIMIZATION 299

REM #®*kkkdkxkhkkhhhhhdhhkhxhhdhhdbrdkhkhakohhhdhhdhddddhrdhbhadrhris

REM IADACE.BAS
REM LOHMANDER PETER 92-03-25, 00.27
REM PROGRAM FOR STOCHASTIC QUASIGRADIENT OPTIMIZATION OF SEVERAL

REM ADAPTIVE FOREST INDUSTRY ENTERPRISE DECISIONS.
REM *kwddkdkkkkrkhhkhhhhhhhhdhrhhhrhkakrhhdhdkhhhokdhokhdkdhhddrrhr

REM The objective is to find the adaptive decisicn rules

REM that maximize the expected present value of all activities over
REM time. A complete Markov decision treatment with linear programming
REM and/or policy iteration is not possible since the state space in
REM that case must be discrete and becomes very large and numerically
REM difficult to handle if a high state space resolution is needed.
REM The problem with the Newton Raphson method in this application

REM is that the objective function 1s not everywhere

REM two times continucusly differentiable with respect

REM to all variables of interest.

REM oo o o e e

CLSs
REM RANDOMIZE

REM rhkdkrhkkkkErkk kb kdkrkkr kT kA Nk Ak Ak kA A Ak k ek kR

REM SECTION 1. Dimensions, openings, inputs and definitions.
REM Ak kA A AR AR AR AN AR A R R R AR AT Rk ke r R wFrr ke d b dk ok d

DEFDEL A-H, 0-2

DIM X{10), XBEST(10), FX(10), DX(10), XOLD(10}), XCHANGE(10)
DIM Y(1, 100), U{l, 100), PRO(100), DISC{1l00;

CIM XTOT (10, 10), AVERS(10), AVERH(10)

DIM PP(12, 20), PW(l1l2, 3G), HC(12, 30}, UTSTATE(l2, 4)

DIM UTDEC(12, 4), UTPARA(1l2, 4)

OPEN "INIADS.DAT" FOR INPUT AS #1
OPEN "UTIADE.DAT" FOR OUTPUT AS #Z

CLS

PRINT "YOU NOW ENTER THE ADAPTIVE FOREST INDUSTRY "

PRINT "ENTERPRISE CONTROL FUNCTION OPTIMIZER™

REM BEEF

PRINT "by Peter Lohmander 19%2"

PRINT "": PRINT "™

REM INPUT "If you want detailed state and decision tables, type 1. ", UTTAB
UTTAE = 0

RKEM BEEP

PRINT o e v e s e et i i o i it o i —————T

REM INPUT "If you want detailed iteration information, type 1. ", UTITER
UTITER = 0

pRINT mnn

INPUT #1, INFOTEXS

INPUT #1, AUTHS

INPUT #1, TWHENS

PRINT DATES, TIMES

PRINT #2, DATES, TIMES

PRINT TWHENS

PEM s e e o e e e e e e e e e e E—
REM The number of parameters to be optimized, IXMRX, is determined.

INPUT #1, IXMAX, TS
IMAX
TMRX

(]
g
ES

IMAY + 1
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REM ==————————e———a e e e e e e e e et o e e i B -
REM The initial values of the variables to be optimized are determined.
REM =——————————mmmmmmmmm e E——— e ——————

INPUT #1, X(1}, TS
INPUT #1, X(2), T%
INPUT #1, X{3), T%

REM ===emmmm—————— e e e ——————
REM The rate of interest is determined.
REI{ _____ ———— —————— T ——————————— — — o ——

INPUT #1. RATEINT, TS
R = RATEINT / 100G

REM ===mm———— —————————— e e ———
REM STA = step size when the partial derivatives are approximated.
REM ————mm———— e mm e mm e e e B e
INPUT #1, STh, TS

REM =~—=——=—====—————— e —————

REM DISTC = Initial step size before reduction via bisection.

o e
INPUT #1, DISTO, TS

REM ——=—==———==== e

REM The lenght cf each period (months) is determined.

REM ——————= ——————— e e ————————a et e e e

INPUT #1, PERL, TS

REM ——==———————= —————————— e e

REM The time horizon is determined (menths).

REM ————==—————————— e

INPUT #1, TMRX, TS

REM ———=——=—————== o ———————— e
REM The initial state is determined. F = wood resource in the forest,
REM S1 = raw materials stock and S2 = stock of products at the industry.
REM —————r—————————e o, et e . e i i e
INPUT #1, FO, TS: UTSTATE(l, 1) = FO

INPUT #1, S10, TS: UTSTATE(1, 2) =
INPUT #1, S20, TS$: UTSTATE(1, 3} = S20

REM ==srremmmm e e e e e e e e S ——— o e et e g e e
REM Distributicn function parameters of wood price, harvest cost and
REM product price.

REN === 2 e e e e e e e e 7 e e e
INPUT #1, PWMEAN, TS

INPUT #1, PWSTDEV, TS

INPUT #1, HCMEAN, T$§

INPUT #1, HCSTDEV,. T$

INPUT #1, PPMEAN, TS

INFUT #1, PPSTDEV, TS

REM ———————————— e e e e
REM Industrial stock and production capacity levels.
REM ——— e e mm e e e e e

INPUT #1, S1MAX, T$

INPUT #1, S2MAX, TS

REM INPUT #1, MMAX, T$

REM THE PRODUCTION CAPACITY LEVEL IS NOW DETERMINED ENDOGENOUSLY.
INPUT #1, CMMAX, TS

BEEM ————— e e e £ o e R FRR———
REM The number of experiments and the number of price vector series
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REM (complete histories) in each experiment are determined.

INPUT #1, NUMEX, TS
INPUT #1, NUMPRI, TS
PRINT "NUMPRI = "; NUMPRI; TS

REM *kddkrdrrrwhkkdkkdddkidkkdtk s g e g e g ok ok g e ok o o ok e o e e e e ok e ok kdhdrhkkdkkk ki kkk
REM SECTION 2. The experiment loop starts here. NUMEX experiments

REM will take place where each experiment has its own
REM set of NUMPRI stochastic price series. For each
REM set of price series, the harvest function is

REM optimized. The price series are generated frem an
REM application of the central limit theorem. They
REM are approximately N(PAV,STDEV~2). Compare Rde and
REM Westergren (1988) pg. 316.

REM e i R L L T T L T T AP

FOR EPER = 1 TO NUMEX

PEM s e e B S . o e e S B
REM Here, the stochastic price series are calculated.
REM === e e e e e e e e e e e -

FOR T = 1 TO TMAX
FOR NPRI = 1 TO NUMPRI

PRAN = 0: FOR I = 1 TO 12: PRAN = PRAN + RND: NE¥T T
PW(T, NPRI) = PWMEAN + (PRAN - &) * PWSTDEV

PRAN = 0: FOR I = 1 TO 12: PRAN = PRAN + RND: NEXT I
HC(T, NPRI) = HCMEAN + (PRAN - 6) * HCSTDEV

PRAN = 0: FOR I = 1 TO 12: PRAN = PRAN + RND: NEXT I

PP(T, NPRI) = PPMEAN + (PRAN - &) * PPSTDEV
NEXT NWPRI

DISC(T) = EXP(-R * T * PERL / 12)

REXT T

REM —===—— o e
REM The start values are saved in XOLD(.).
REM ———— = e e

FOR I = 1 TC IXMRY: XOLD(I) = X(I): HEXT I

REM ——— e e e e T —
REM The number of step directions, N, the "best objective function

REM value", PIO, and the "latest objective functicn value", AOBJ, are

REM given initial values that make the iteration leave the initial guess.
REM —=————— e e ——————— e ——————— e e e e e e ——
N=20

PIC =0

ADBJ = =1000000

430 REM ————-————mmeu e N
REM The "latest objective function value", AOBJ, is calculated in the
REM subroutine where the complete dynamical system is included.

REM — e L e e e i e e SR —— i

REM =eamc e O EE= e e i A i
REM If the latest solution is better than the cld solution, then we

REM move on to 422 and test a new direction and more movements from the
REM latest solution.
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420 IF PI0 < AOQBJ THEN GOTO 422

REM == e e e e e e e e e
REM Now, the old sclution clearly was not worse than the old solution.

REM Hence, we accept the solution and move on the the next experiment.

423 NEXT EPER

REM Now, all experiments have been completed. It is time to send the
REM solutions to the result file UTADG.DAT. This is done from line 1000.

REM If more than 200 directions have been tested in this experiment,
REM then the iteraticns are stopped and the next experiment is started.
FEM e o o o o o o o o o e e s o - e e =
IF K > 200 THEN GOTO 423

STELOC = 0

CLS

REH drkdkkdddkkdkkdkdkkkkdhkdhkdkhkhkdkbdnhkhbhkrdhhkhkkhdbdhrhdbhrhthrdhhdk

REM SECTION 3. The latest soluticn is printed on the scresen.
REEM *xdkkrdkkkrkhdrdhdhkddhrdhhhdddhhhdrdhrhrhddhbhrhhdhadohnddx

PRINT Mk ko r ok kA kA AR A N RN A R NN Ak m ke ke k ke kwd W
PRINT "EXPER = "; EPER;

PRINT " N = ": H; " interest = "; RATEINT; " TMAX = "; TMAX; "PERL = ";
PRINT "PRICE VECTOR SERIES IN EACH EXPERIMENT = "; NUMPRI

PEINT "S1MAX, SZMAX, MMAX = "; SIMAX; S2ZMARX; MMAX

PRINT "PARAM. (PW, HC, FP) = "; PWMEAN; PWSTDEV;

PRINT HCMEAN; HCSTDEV; PPMEAN; FPSTDEV

PR INT mun

ERINT " VARIABLE VALUE CHANGE REL. CH."

FOR I¥X = 1 TO IXMAX
XCHANGE (IX) = X{IX¥) - XOLD{IX)

RECH = 0O

IF N = 1 THEN GOTO 77

RECH = XCHANGE(IX) / X(IX)

77 PRINT USING "“#####.#####",; IX; X{IX); XCHANGE(IX); RECH
XTOT (EPER, IX) = X(IXj

XOLD(IX) = X(IX)

NEXT IX

GOSUB 2190

PIO = AORJ

PROFBEST = PID

PRINT "

PRINT " #*#*%xx%*% OBJECTIVE FUNCTION VALUE = "; PROFBEST; " ®xtsxx¥
PRINT "v

REM dksrdrdrdkdrdrdkddrdwdddkddwrddhdrdddrhwdddddhkdddkdkdddrddwdddrdkdddrdkdbddwidd

REM SECTION 4. THE FARTIAL DERIVATIVES OF THE OBJECTIVE FUNCTION
REM ARE CALCULATED ANLD STEPS ARE TAKEN IN THE MOST
REM "PROFITABLE" DIRECTION.

FEM #*#%kbkk kb A A Xxdhrkrrrtdhd bkt dhhkthdk At bk x bk ARt hnhhbkdkdh bk bdrbhhohdd

B s e e i i
REM The partial derivatives of the objective function are calculated.

PERL
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IF UTITER = 1 THEN PRINT "—mm——ee NEW ITERATION DIRECTION ~-———m==e—em "
FOR IX = 1 TO IXMAX

X(IX) = X(IX) + STA

GOSUB 2190

PI1 = AOBJ

X(IX) = X(IX) - STA

FX(IX) = (PI1 - PIO) / STA

IF UTITER = 1 THEN PRINT "ix, fx(ix) = "; IX; FX(IX)

NEXT IX

IF UTITER = 1 THEN PRINT "n

REM The distance PRELDIS is the Fuclidian distance of the movement
REM i1f all parameters (variablesj are moved the distances equal
REM to the partial derivatives of the objective function to

REM the respective parameters (variables).

REM ——==mme e e e

FOR IX = 1 TO IXMAX

PRELDIS = PRELDIS + FX(IX)} * FX(IX)

NEXT IX

PRELDIS = PRELDIS ~ .§

IF UTITER = 1 THEN PRINT "preldis = "; PRELDIS
IF UTITER = 1 THEN PRINT "0

IF PRELDIS < .0001 THEN PRINT "STEP=Q"

REM ——— e s e e e e ———— T ——

REM Determination of the optimal step length in the suggested direction

REM via a modified bisection method.

RN e e e e e e e e e e R

PROMDIR = PIC
DIST = DISTO

7 REM
STELOC = STELOC + 1

REM If we have taken more than 100 steps in the suggested direction, some
REM numerical problem may be present or we may have an objective function

REM that is not locally concave. We keep the latest objective function
REM value and leave the local steps and iterations.

RH“ —————————————————————————————————————————————————— B T T ———
IF STELOC > 100 THEN GOTO 4130

REM ———— e o e e e e e e e ———————

REM If the steps are still sufficiently large, go tc line 20.

Rm ———————————————————————————————— it

IF DIST > (DISTO / 3000) THEN GOTO 20

REM NHow, the steps are too short. The old solution is selected and we
REM finally leave the iteraticns.
REM

—_—-.-...-.__——-.-.._————.-_-.___—-.....____—.---._____._______..______._________....__

FOR IX = 1 TO IXMAX
X(IX) = XBEST(IX)
NEXT IX

GOTC 430
20 BN e e e e e

REM The different parameters (variables), X(IX), are changed in the
REM suggested direction in a way that makes the Euclidian distance of
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REM the movement equal tc the step length.

FOR IX = 1 TO IXMAX
DX(IX) = FX(IX; * DIST / PRELDIS
NEXT TIX

FOR IX = 1 TO TXMAX
X(IX) = X(IX) + DX(IX)

IF UTITER = 1 THEN PRINT "IX = "; IX; " X(IX); = "; X(IX)
NEXT IX

GOSUB 2190

PROMEV = AOEBJ

IF UTITER = 1 THEN PRINT "OEJECTIVE FUNCTION = "; PROMEV

IF UTITER = 1 THEN PRIRT ""
IF PROMEV > PROMDIR THEN GOTO B

FOR IX = 1 TO IXMAX
A(IX) = X(IX) - 2 * DX(IX)
NEXT IX

DIST = DIST / 2
GOSUB 2190
PROMDIE = ROBJ
GOTO 7

8 PROMDIR = PROMEV
IF PROMDIR <= PROFBEST THEN GOTO 7
PROFBEST = PROMDIR

FOR IX = 1 TO IXMAX

¥BEST(IX) = X(IX)

NEXT IX

GOTO 7
END

1000 REM L L R R R a2 22222 2SS S SRS SRR 22 2ttt i it bt kg

REM SECTION 5. RESULTS ARE SENT TO THE OUTPUT FILE UTIAD.DAT
REM #*xkkkddbkkhmkdrdhkhrhdhdhdhdddddhrhdhhkdddhddhdhddhkrdrrrdhrkohrrs

FRINT #2, "FILE = UTIADS.DAT"

PRINT #2, "RESULTS FROM IADACS.BAS"

PRINT #2, TWHENS

PRINT #2, "NUMBER OF EXPERIMENTS = "; NUMEX

PRINT #2, "VECTOR PRICE SERIES IN EACH EXPERIMENT = "; NUMPRI
PRINT #2, "INTEREST RATE = "; RATEINT; " NUMBER OF PERIODS = "; TMAX
PRINT #2, "LENGTH COF EACH PERICL = "; PERL; " DISTO = "; DISTO

PRINT #z, "INITIAL FOREST STOCK = "; FO
PRINT #2, "INITIRL RAW MATERIALS STOCK = "; 510

FRINT #2, "INITIAL PRODUCT STOCK = "; S20

PRINT #2, "MEAN WOOD PRICE = "; PWMEAN; " AND ST. DEV. = "; PWSTDEV
PRINT #2, "MEAN HARVEST COST = "; HCMEAN; " AND ST. DEV. = "; HCSTDEV
FRINT #2, "MEAN PROD. PRICE = "; PPMEAN; " AND ST. DEV, = "; PPSTDEV
PRINT #2, "MAXIMUM RAW MATERIALS STOCK CAPACITY = "; S1MAX

PRINT #2, "MAXIMUM FRODUCT STOCK CAPACITY = "; S2MAX

PRINT #2, "MARGINAL PROD. CAP. COST PER PERIOD = "; CMMAX

FRINT #2, "“

PRIKRT #2, "MAXIMUM OBJECTIVE FUNCTION VALUE = "; PROFBEST

FRINT #z, "THE OPTIMIZED ADAPTIVE CONTROL FUNCTION PARABMETERS BRE: "
FOR EPER = 1 TO NUMEX

PRINT #2, "EXPERIMENT = "; EPER

FRINT #2, "PARAMETER LIST = ";

PRINT #2, "( = PPSELL, PWBUY*10, OPTMMAX#*10000) "
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PRINT #2, "

FOR IX = 1 TG IXMAX

PRINT #2, USING "#######.####4#"; XTOT(EPER, IX);
NEXT IX

PRINT #z, "

NEXT EPER

PRINT #2, "n
PRINT #2, V"hxkkkdkkdkkddkx END OF LIST wdkdkdkkbhkrhtdhkdl

CLOSE #2

IF SGNL = 0 THEN END
FOR I =1 TQO 2: SOUND (1000 + I * 50}, 5
SQUND (3000 = I * 50), 5: NEXT I

END

2190 REM

REM SS5S55555S55555555585555585555585555558555555555885S55555855588888
REM HERE, THE OBJECTIVE FUNCTION, AOBJ, IS "WRITTER".

REM NOTE THAT THE "OBJECTIVE FUNCTION" MUST BE CALCULATED VIA THE
REM SIMULATION OF THE COMPLETE SYSTEM DURING A LONG TIME PERIOD!
REM ES5ES5E5555555E855555555555555555555555555555555555555555555558

PROFIT = 0

REM = e e e e e e e e e e e
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REM The calculations are repeated for each price series in the experiment.

REM e o i i o e e e e e e i o e e o e A

FOR NPFRI = 1 TC NUMFRI

REM, =i i oot et it
REM The parameters are determined.

PPSELL = X(1)
PWBUY = X(2) / 10
MMAX = X(3) / 10000

REM = e e e e e e e e e e e e e e e
REM The path and the objective functicn of the
REM system under adaptive control are calculated.

F = UPSTATE(T, 1): S1 = UTSTATE(T, 2): S2 = UTSTATE(T, 3)

SA = 0
IF PP(T, NPRI} > PPSELL THEN SA = S2

M= .2 % 5]

IF M > MMAX THEN M = MMAX

L=(5~251) / 5

H=2* (F-3) *L

IFH > (F-3) THENH = F - 3

IFH <O THEN H = 0

B = .04 * (PWBUY - PW(T, NPRI}) * L

IF B < 0O THEN B = 0

Z=H+B

IF Z > (5 -~ S1) THEN H=H » (5 - S1) / %
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IF Z > (5 - 51) THEN B =B * (5 - 51) [/ Z

UTDEC(T, 1) = H: UTDEC(T, 2) = B: UTDEC(T, 3) = M: UTDEC(T, 4) = SA
REM === == e e e e e e e e e e e
REM Difference eguation path calculation.
REM ====m=—m——————— e o

52 = 52 + M - SA
51 =51+ B+ H-5®*HM
F=F+ .2*F* (1l -TF/ 10} - H

UTSTATE(T2, 1) = F: UTSTATE(Tz, 2} = 51: UTSTATE(T2, 3) = 52

REM —-—————————=—= e -
REM Local (in time) profit calculation.
o ——————

PRO(T) = PP(T, NPRI) * SA - PW(T, NPRI) *» B - HC(T, NPRI) * H
PRO(T) = PRO(T) - CMMAX * MMAX

REM Calculation of the total present value of the profits except for
REM the value of the finally available resources. The value PROFIT
REM includes the profits of all price series in the experiment.

REM The wvalues of the finally available forest resource and stocks
REM are added to the profit function in the end.

REM ————mm e e e e e e ———— e e e
FOR T =1 TO (TMAX - 1)

PROFIT = PROFIT + DISC(T) * PRO(T)

HEXT T

PT = UTSTATE(TMAX, 1): S1T = UTSTATE(TMAX, 2): 52T = UTSTATE(TMAX, 3)

PROFIT = PROFIT + DISC(TMRX) * (PWMEAN * FT + PPMEAN * (.2 * 51T + 1 * S52T))
IF UTTAB = 1 THEN GOSUB 4000

NEXT NPRI

AOBJ = PROFIT

RETURN

4000 REM
REM S555S55SS5SESSSSSSSSSS55555588588

REM SUBROUTINE FOE DETAILED OUTPUT.

REM SSSS5S555555555555555555S55555558

PRINT " T F S1 sz H B M SA PW HC PP

FOR T = 1 TC TMAX

PRINT USING "##"; T;

PRINT USING "###.#": UTSTATE(T, 1); UTSTATE(T, 2); UTSTATE(T. 3);

PRINT USING "###.#": UTDEC(T, 1}; UTDEC(T, 2); UTDEC(T, 2); UTDEC(T, 4};
PRINT USING "#####."; PW(T, NPRI); HC(T, NPRI); PP(T, MNPRI)

NEXT T

INFUT "NEW TABLE? THEN PRINT 1", XXXX

RETURN
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“INIADS.DAT, THE INPUT FILE OF IADACB.BAS."
WINPUT FILE AUTHOR = PETER LOHMANDER."
"INPUT FILE VERSION: DATE 92-03-24. TIME = 10.4B"

3 " IEMAX"™

3452 "PPSEL GUESS, THE SALES RESERVATION PRICE"

2180 "PWBUY*10, THE WOOD BUY RESERVATION PRICE"

4000 "MMAX*10000, THE MAXIMUM PRODUCTION CAPACITY™

5 TRATEINT"

100 "STA, derivative calculations step size"

100 "DISTO, initial step size before step reductions"
1 "PERL, MONTHE"™

12 WTMAX, MONTHS"

5 IIFDII

2 'Ilsloll

«B fnga2o0"

200 “"MEAN WOOD PRICE"

50 "STDEV WOOD PRICE"

100 "MEARN HARVEST COST"

20 "STDEV HARVEST CGST"

3000 "MEAN PRODUCT PRICE"

1000 "STDEV PRODUCT PRICE"

5 nSIMAX"

2 "SIZMAY"

2000 "CMMAX, THE MARGINAL PRODUCTION CAPACITY COST PER PERIOQD"
s "NUMEX = NUMBER OF EXPERIMENTS"

30 "NUMPRI = NUMBER OF COMPLETE PRICE VECTOR SERTIES, HISTORIES"™

rem This 1is a command file CIND:z.bat

rem by Peter Lohmander 9z-03-25,

rem It controls the adaptive forest industry
rem optimizations via the program IADACS.EXE.
BREAK=0N

COPY IN6.DAT INIADE.DAT

IADACE

COPY UTIADE.DAT UT6E.DAT

COPY IN7.DAT INIADE.DAT

IADACSE

COFPY UTIADS.DAT UT7.DAT

COPY IN8.DAT INIADE.DAT

ILDACSE

COPY UTIADS.DAT UTB.DAT

COPY INS.DAT INIADE,DAT

IADACSE

COPY UTIADE.DAT UT9.DAT

COPY IN1G.DAT INIADS.DAT

IADACS

COPY UTIADE.DAT UT10.DAT

307
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03-25-1992 00:56:23
FILE = UTIADS.DAT

RESULTS FROM IADACE.BAS

INPUT FILE VERSION: DATE 92-03-24. TIME = 1G.48
NUMBER OF EXPERIMENTS = 5

VECTOR PRICE SERIES IN EACH EXPERIMENT = 30
INTEREST RATE = 5 NUMBER OF.PERIODS = 12
LENGTH OF EACH PERIOD = 1 DISTO = 100
INITIAL FOREST STOCK = 5

INITIAL RAW MATERIALS STOCK = 2

INITIAL PRODUCT STOCK = .5

MEAN WOOD PRICE = 200 AND ST. DEV. = 50
MEAN HARVEST COST = 100 AND ST. DEV. = 20
MEAN PROD. PRICE = 3000 AND ST. DEV. = 1000
MAXIMUM RAW MATERIALS STOCK CAPACITY = &

MAXIMUM PRODUCT STOCK CAFACITY = 3
MARGINAL PROD. CAP. COST PER PERIOD = 2000

MAXIMUM OBJECTIVE FUNCTION VALUE = 285776.161970E1E
THE OPTIMIZED ADAPTIVE CONTROL FUNCTION PARARMETERS ARE:
EXPERIMENT = 1

PARAMETER LIST = { = PPSELL, PWBUY*10, OPTMMAX=*10000;

3545.14894 3076.52789 3736.15923

EXPERIMENT = 2
PARAMETER LIST = { = PPSELL, PWBUY*10, OPTMMAX=*10000)

3770.50435 30B6.99B3% 2895.01180

EXPERIMENT = 3
DARAMETER LIST = ( = PPSELL, PWBUY*10, OPTMMAX*10000)

2948.14838 3145.5€166 4115.89434

EXPERIMENT = 4

DARAMETER LIST = { = PPSELL, PWBUY*10, OPTMMAX*10C00)
3672.97044 3219.59962 4217.74301

EXPERIMENT = 5

PARAMETER LIST = ( = PPSELL, PWBUY*10, OPTMMAX*10000)
3743.351z23 3246.65698 426E.48B24

xkkkkkkAkknkk® END OF LIST *kiwsuhhkkkkkihdd
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REM **t*********1‘*******H***t*t**l‘**ﬂ'i’tt*t*ti******t************

REM ISIMS.EBAS
REM LOHMANDER PETER 92-03-26, 14.42
REM PROGRAM FOR SIMULATION AND TEST OF ADAPTIVE DECTISION RULES

REM IN THE FOREST INDUSTRY ENTERPRISE.
REM *kddddmd ko ke kR hd sk oo dr g 30k ok ok o o e ok o ok o ok o oo e o o o s o o o e

CcLS

REM RANDOMIZE

PRIH‘T mH

PRINT "You now enter the program ISIM"
PRINT Mhkkhhhkkdkhhbhh bkt rrrahkkdehkkrhkn 0
PRINT "by Peter Lohmander 92-03-26"
PRINT "o

BEEF

REM %&ddkkddhddhkxdddhdhkddhhdkkhrkkkhhhkkkrk kb h kb Ak kA b h ki kb ks

REM SECTION 1. Dimensions, openings, inputs and definitions.
REM #*%kxhxdedhd kb k b d btk dh ke k bk ke ke hk &

DEFDEL A-H, O-2
DIM X(10), PREVM(30), PREVMT(1000)

DIM Y(1, 100}, U(1, 100), PRO(100), DISC(100)

DIM XTOT(10, 10), AVERS(10), AVERH(10)

DIM PP(12, 30), PW(12, 30), HC(12, 30}, UTSTATE(12, 4)
DIM UTDEC(12, 4), UTPARA(12, 4)

BEM e i i Sk
REM Parameters are defined.
REM ==m=ommm— e
R = .05

PERL = 1

TMAY = 12

FO = 5: UISTATE(l, 1] = FO
S10 = 2: UTSTATE(1l, 2) = S10

520 = .5: UTSTATE(1l, 3) = 520
PWMEAN = 200: PWSTDEV = 50
HCMEAN = 100: HCSTDEV = 20
PPMEAN = 3000

SIMAX = 5: S2ZMAX = 3

CMMAX = 2000

HUMEX = 5: NUMPRI = 30
INPUT "Standard deviation of product price = ", PPSTDEV

REM —-=—m————— e e e e e e e e i e e

REM The optimal capacity decision and the

REM adaptive rules are determined

REM via the optimized equations.

REM —m e e e e e e

MMAX = .3369 + 6.723 / 100000 * PPSTDEV
PPSELL = 3293 + .3947 #* PPSTDEV
PWBUY = 28B9.5 + .0247 * PPSTDEV

REM X(1) = PPSELL: X(2) = 10 * PWBUY: X(3) = MMAX * 10000

100 PRINT un

PRINT "The following decisions are made: "
PRINT "MMAX = ";

PRINT USING "“###.###"; MMAX;

PRINT ", PPSELL = ";



310

P. LOHMANDER

PRINT USING "“#####.##"; PPSELL;
PRINT ", PWBUY = ";
PRINT USING “####.##"; PWBUY

PRIKT "¢

IKPUT "Are the decisions satisfactory? Then print 0.", SVAR
IF SVAR = 0 THEN GOTOC 200

INPUT "New value of MMAX? ( 0 = no.)", MMAXEV

INPUT "New value of PPSELL? {0 = no.j", FPSELLEV

INPUT "New value of PWBUY ? (0 = no.)", PWBUYEV

IF MMAXEV > .01 THEN MMAX = MMRXEV

IF PPSELLEV > .01 THEN PPSELL = PFPSELLEV
IF PWBUYEV > .01 THEN PWBUY = PWBUYEV
GOTO 100

200 REM

X(1) = PPSELL: X(2) = 10 * PWBUY: X(3) = MMARX * 10000

RFEM dakd kA kA kA A kA Ak h kA kA kR vk ke k ke kk ®

REM SECTIOK 2. The experiment losp starts here. NUMEX experiments

REM will take place where each experiment has its own
REM set of NUMPRI stochastic price series. For each
REM set of price series, the harvest function is

REM optimized. The price series are generated from an
REM application of the central limit theorem. They
REM are approximately N(PAV,STDEV“2). Compare Rde and
REM Westergren {1968) pg. 316,

REM *hkddkdkdkdhkhrhkdrhhhdkddr kbR k kb r ko k®

TOR EPER = 1 TO NUMEX

PRINT "": PRINT "
PRINT "Experiment nr. "; EPER; " starts now."
REM = e e e e e

REM Here, the stochastic price series are calculated.
REM —m o
FOR T = 1 TO TMAX

FOR NPRI = 1 TO NUMPRI

PRAN = 0: FOR I = 1 TC 12: PEAN = PRAN + RND: NEXT I
PW(T, NPRI) = PWMEAN + (FRAN - &) * PWSTDEV

PRAN = 0: FOR I = 1 TO 12: PRAEN = PRAEN -+ RND: NEXT I
HC(T, NPRI) = HCMEARN + (PRAN - €) * HCSTDEV

PRAN = 0: FOR I = 1 TG 12: PRAN = PRAN + RND: NEXT I
PP(T, NPRI) = PPMEAN ~ (PRAN - 6) * PPSTDEV

NEXT NFRI

DISC(T} = EXP(-R * T * PERL / 12)
NEXT T

REM
GOSUR 2130

FOR I = 1 TO NUMPRI

GINDEX = (EPER - 1) * NUMPRI + I
PREVMT (GINDEX) = PREVM(I)

REXT 1

EPROFIT = AOBJ / NUMPRI
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VARI = 0
FOR I = 1 TO NUMPEKI
VARI = VARI -~ (PREVM(Ij] - EPROFIT) * =

NEXT I
STDEV = (VARI / (NUMPRI - 1)) * .5
STDEVM = STDEV ; (NUMPRI ~ .5)

PRINT "EXPECTED FROFIT = ";

PRINT USING "“######.##"; EPROFIT;

PRINT ", ESTIMATION ERROR = ";

PRINT USING "#####.##"; STDEVM

PRINT "STANDARD DEVIATION OF DIFFERENT OUTCOMES = ":
PRINT USING "######.##"; STDEV

FOR I = 1 TO NUMPRI
PRINT USING "######.###"; PREVM(I);
NEXT I

NEXT EPER

TEPROF = 0
NTOT = NUMPRI * NUMEX

FOR I = 1 TO NTOT

TEPROF = TEPROF -~ PREVMT (I}
NEXT I

TEPROF = TEPROF ;/ NTOT

TEVAR = O

FOR I = 1 TD NTOT

TEVAR = TEVAR + (PREVMT(I) - TEPROF) -~ 2

HEXT I

TESTDEV = (TEVAR / (NTCT - 1)) = .5

TEPROFE = TESTDEY ; NTOT * .5

CLS : BEEF

"RINT LRSI T 2 8 I8 X2 2 RESULTS FROM Isln TEEEEEFE TR T AR e ke kel
DRINT ™"

PRINT "PPSTDEV = "; PPSTDEV

FRINT " MMALX PPSELL PWBUY"

PRINT USING “######.###"; MMAX; PPSELL; PWBUY

PRINT "M

FREINT "Expected present value Estimation error Sample st.gev."
PRINT " <

FRINT USING “"####f#F#e####F##. ##"; TEPROF; TEPROFE; TESTDEV

FRINT ™"

PRINT "Number of trials = "; NTOT

PRINT ""

PRINT Mhkdkkdkbkdhhkddadhdhhhddohhdrhhdrhrdrtddkdrrddhdhddbrdndhdrhadirll

END

219C REM

REM S5555555555555555555555555855585558585568555888555555555555555858
REM HERE, THE OBJECTIVE FUNCTION, AOBJ, IS "WRITTEN".

REM NOTE THAT THE "“OBJECTIVE FUNCTION" MUST BE CALCULATED VIA THE
REM SIMULATION OF THE COMPLETE SYSTEM DURING A LONG TIME PERIOD!
REM S55555555555555555555555555555555555555555555555555555585585588¢88

PROFIT = ©
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REM The calculations are repeated for each price series in the experiment.

PR = 0

REM ——————— e e e e
REM The parameters are determined.
REM ————m—m e e

PPSELL = X(1)
PWBUY = X(2) / 10
MMAX = X(3) / 10000

REM The path and the objective function of the
REM system under adaptive control are calculated.

REM ———mmmmmmmmee e ———————
FOR T = 1 TO (TMAX - 1)
T2 =T + 1

REM e e s
REM Adaptive control decisions.
PEM e N

F = UTSTATE(T, 1): S1 = UTSTATE(T, 2): 52 = UTSTATE!T, 3)

SA = 0
IF PP(T, NPRI) > PPSELL THEN SA
M= .2 * 81

IF M > MMAX THEN M = MMAX
L={(5=2581) }/ 5

H=2 &« (F -3} L

IFH> (F-3) THENH=F - 3
IF H< O THEN H = 0

B = .04 * (PWBUY - PW(T, NPRI})
IFB < O THEN B = 0
Z=H+B

IF 2 > (5 - S1) THEN H
IF Z > {5 - S1) THEN B

52

"
g

1
w
=

-
]

H* (5
B * (5

I

1
wn
i

—
o]

UTDEC(T; 1) = H: UTDEC(T, 2) = B: UTDEC(T, 3) = M: UTDEC(T, 4) = SA

REM = oo o o et e ———
REM Difference eguation path calculation.
REM == e i e e i o

§2 = 52 + M - SA
S1 = S1 +B+H<-51%M
F=F+ .3 %F* (1-F/ 10) -H

UTSTATE(TzZ, 1) = F: UTSTATE(T2, 2) = S51: UTSTATE(T2, 3) = 82

REM ——— e e
REM Local (in time) profit calculation.

= PP(T, NPRI) * SA - PW(T, NPRI) * B - HC(T, NPRI) * H
PRO(T) = PRO(T) - CMMAX * MMAYX

BEM === e e e e e e e e e e e e e ———
REM Calculation of the total present value of the profits except for
REM the wvalue of the finally available resocurces. The value PROFIT
REM includes the profits of all price series 1in the experiment.
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REM The values of the finally available forest resource and stocks
REM are added tc the profit function in the end.

Rm e e et

FOR T = 1 TC (TMAX - 1)
PR = PR + DISC{T) * PRO(T)
NEXT T

FT = UTSTATE(TMAX, 1): 51T = UTSTATE(TMAX, 2): S2T = UTSTATE!TMAX, 3

PR = PR + DISC(TMRX} * (PWMEAN * FT + PPMEAN * [,2 * S1T - 1 =* E2T; )
PREVM (NFRI) = PR

PROFIT = PROFIT + PREVM(NPRI)

IF UTTAER = 1 THEN GOSUR 4000

HEXT NFRI

ROBJ = PROFIT

RETURN

4000 REM

REM SS5S555585555555555558585558585855585858

REM SUBROUTINE FOR DETAILED OUTPUT.

REM SS5555SES5S5S5558555855585555558555

PRINT " T F 51 52 H B M SA PW HC PP

FOR T = 1 TC TMAX

PRINT USING "##"; T;

PRINT USING "###.#"; UTSTATE(T, 1); UTSTATE(T, 2): UTSTATE(T, 3);
PRINT USING "###.#"; UTDEC(T, 1); UTDEC(T, 2); UTDEC(T. 3): UTDEC(T, 4);
DRINT USING "#####."; PW(T, NPRI); HC(T, NPRI); EP(T, NPRI)

NEXT T

INFUT "NEW TABLE? THEN PRINT 1", XXXX

RETURN
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You now enter the program ISIM
kAR Rk ke d ke

by Peter Lohmander 92-03-26&
Standard deviation of product price = 1000

The following decisions are made:
MMAX = 0.404, PPSELL = 36E7.70, PWBUY = 314.2C

Are the decisions satisfactory? Then print 0.0
Experiment nr. 1 starts now.

EXPECTED PROFIT = BB43.80, ESTIMATION ERRCR = £73.83
STANDARD DEVIATION CF DIFFERENT OUTCOMES = 2595.25

10153.736 10710.850 9424.87C 710:.411 9244.336 B8997.180
7111.577 B8614.843 6197.491 9421.084 7459.553 B791.364
6013.337 11533.178 4563.287 B464.365 4690.432 7457.663
a571.252 12424.298 4077.613 B467.354 163BB.458 12563.518

Experiment nr. 2 starts now.

7581383
7019.114
10817733

i0085.
105682,
9BO0Z.

Lt A

Ehkkkkhkkkkkkkkk*xdr RESULTS FROM ISIM *kkkkdkdrdhkdhdhkohrhrhss

PPSTDEV = 1000
MMAX PPSELL PWBUY
0.404 36B87.700 314.200
Expected present value Estimation error Sample st.dev.
9050.88 184.48 2259.35

Number of trials = 150

kkkkhkkhhkdhhdhkhkhhkhkhdbnkbhkhkhkdhknkhhhrhdbdbdhdhrhkbkdhdbhhkhhkbhbndhkdrkd



