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The Future of Forest Wildfires 
in the Czech Republic:

This future is a function of several things. 

#1. Some of these can not be very much affected by 
humans.

#2. Some of these can be affected by humans in all 
countries, in the long run.

#3. Some of these can be affected by humans, in the 
country, in the long run.

#4. Some of these can be affected by humans, in the 
country, in the short run.  
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Asteroids can hit the Earth. A volcanic winter can occur if
volcanoes explode and increase the reflection of solar
radiation. The orbit of the Earth changes, periodically and 
aperiodically. The planetary system contains deterministic
chaos and cannot be perfectly predicted and/or proved to 
be stable in the long run. Temperature changes follow. 
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SUB-TOPIC 1: CO2 Dynamics and Emission Control

The emissions can be changed. 
Even with strong emission reductions, however, the CO2

level in the atmosphere changes very slowly. 

Global long term cooperation
is necessary.



SUB-TOPIC 1: CO2 Dynamics and Emission Control
Recent results from the author:
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Environmentally acceptable expansion of optimal 
and active forestry, adapted to climate change and 
fire risk, railways and green energy, can reduce CO2

in the atmosphere.

SUB-TOPIC 2: Environmentally
acceptable forestry expansion 
and CO2 effects
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Investments in firefighting capacity and infrastructure take considerable
time. 
International fire cooperation plans and  agreements are important.

These things are necessary to make it possible to rapidly fight fires.

SUB-TOPIC 3: Fire fighting resources, 
infrastructure investments and cooperation
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The size of a forest fire increases rapidly if the air is hot and dry, and the wind speed is high. 
Fire size functions have been estimated for 29 countries.
Detailed functions have been estimated in Czech Republic. 
In CR, the fire size has also been studied as a function of the time it takes to reach the fire.

SUB-TOPIC 4: Forest fire dynamics as a 
function of weather and attack time
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A fire can start in almost any position. Before it has started, the position can be considered as stochastic. 

In some cases, we may estimate probability density functions.
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We should dynamically adapt the 
positioning and readiness of fire fighting 
units to the latest weather information and 
weather forecasts.

If the temperature will be high, the air will
be dry and the wind will be strong:

Make sure that more resources are ready to 
act, and that they are placed in the optimal 
initial positions! 

SUB-TOPIC 5: Optimal adaptive
fire fighting decisions conditional
on the latest weather information 
and predictions
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The Future of Forest Wildfires 
in the Czech Republic:

This future is a function of several things. 

#1. Some of these can not be very much affected by 
humans.

#2. Some of these can be affected by humans in all 
countries, in the long run.

#3. Some of these can be affected by humans, in the 
country, in the long run.

#4. Some of these can be affected by humans, in the 
country, in the short run.  



A general fire fighting decision optimization problem 

under present investigation: 

“Optimal Dynamic Forest Fire Management Adapted to Stochastic 

Weather (marginally updated)”

22

Thank you Dr Zohreh Mohammadi
for very valuable data and information!



Contents:

• The firefighting capacity optimization problem

• General solution to the firefighting capacity optimization problem

• Comparative statics analysis of the optimal solution: How is the 
optimal solution affected by the parameters?

• Fire growth as a function of weather conditions

• Background to empirical weather and fire data

• Dynamic and stochastic properties of air temperature, relative 
humidity and wind speed

• Conclusions
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The firefighting capacity
optimization problem

24

k

k

Fire fighting
unit 1.

x

y

Forest fires have a spatially uniform 
probability density function.

Fire fighting units (blue balls) have initial 
locations in a regular ”infinite” network
with roads in directions N-S and E-W.

The distances between roads is small and 
fire fighting units can always use roads in 
the two directions to reach the different 
fires. (See the purple arrows.)

The decision problem is to determine
the optimal value of k, where the
distance between the nearest neighbours
is L = 2k.

The optimal value of k is affected by many
different parameters, some of which
are functions of the season, for instance air 
temperature, relative humidity and wind
speed. These parameters affect fire growth.

N
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( )min ( ;.) ( )I F
k

C k C k C k= +

Expected cost of
fire fighting capacity
”investment” 
and use of these
resources

Expected cost of destroyed and damaged forests
including costs of CO2 emissions 

Expected total 
costs as a 
function of k.

Fire fighting groups are
located in a regular network with
roads in directions South-North
and East- West. The distance
in one of these directions, between
two neighbour groups, is L = 2k.
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( )( ) , , , ( , )F DC k c N B A H W t k m=  

Expected cost
per burned ha.

Expected number of fires
per time unit. 

Expected size of burned
forest, per fire.

A = Air temperature (Stochastic)
H = Relative humidity (Stochastic)
W = Wind speed (Stochastic)
t(k,m) = expected time of fire life.
m = fire life time before the

fire fighting unit leaves the initial
location and starts to move towards
the fire.

Expected cost of destroyed and damaged forests
including costs of CO2 emissions 
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( )I uC k c U= 

Expected cost of
fire fighting capacity
”investment” 
and use of these
Resources.

Expected cost
per unit.

Number of units per 
10000 square km

2

2 2

1 1 1

(2 ) 4
U k

L k

−= = =
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( ) ( )1 2, , , ( , ) ( , ) , ,B A H W t k m B k m B A H W= 

This will be shown to hold
in general cases.

This has been estimated
with empirical data.Expected size of burned forest, 

per fire.

2 2

1

7
( , ) 2

6
B k m c k km m

 
= + + 

 

Obs: In the
analysis of
B1(k,m), k and 
m are both
expressed in the 
unit ”time”. We
may consider
the distance
between fire
stations as the 
time it takes to 
go from one
station to the 
other. Of course, 
this can also be 
considered as a 
function of the 
road quality and 
the capacity of
the fire engines. 



29
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( , ) 2

6
B k m c k km m

 
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Why is

k

k

Random fires in the square
that is closest to fire fighting
unit 1.

Fire fighting
unit 1.

1

1

0 0

( ) 0

0

for x

f x k for x k

for k x

−




=  
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0 0

( ) 0

0

for y
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for k y
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

=  
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?

x
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Convolution

( ) ( )
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General solution to the firefighting capacity
optimization problem
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Comparative statics analysis of the optimal 
solution: How is the optimal solution affected by 
the parameters?
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If the cost per fire fighting unit increases, 
the optimal distance between fire fighting units increases.
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If the cost per fire damaged hectare of forest increases, 
the optimal distance between fire fighting units decreases.
Note that, if the cost of CO2 emissions is considered, the
optimal value of k is lower than if we do not care
about CO2 emissions.
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If the expected number of fires per area unit increases, 
the optimal distance between fire fighting units decreases.
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If the general fire speed parameter c increases, 
the optimal distance between fire fighting units decreases.
Possible reasons: More open terrain and/or 
larger amounts of dry grass and other fuels.
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If m increases, the fires get more time to grow before fire supression starts, 
and  the optimal distance between fire fighting units decreases.
Possible reasons: Less efficient and/or intensive fire surveillance,
fog, smoke or worse road conditions, forcing the fire fighting units
to decrease the travel speed.  



Fire growth as a function of weather conditions

The comparative statics analysis now needs some empirical
information.
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The empirical estimations gave these results:
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If the air temperature increases, the speed of fire growth increases, 
and the optimal distance between fire fighting units decreases.
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If the relative humidity increases, the speed of fire growth decreases, 
and the optimal distance between fire fighting units increases.
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If the wind speed increases, the speed of fire growth increases, 
and the optimal distance between fire fighting units decreases.



Comments on the 
optimimization problem

Above, we have assumed that labor employment constraints are applied, that require that the numbers of 
fire fighting units at different points in time are determined before the true weather component residuals 
are known. 

Optimality conditions of the dynamically changing firefighting capacity levels have been analytically 
determined. 

The solutions have been found to be unique minima. 

Comparative statics analysis has been used to determine the directions of change of the optimal capacity 
levels under the influence of alternative parameter changes. 

The expected fire sizes can also be numerically approximated via random numbers with relevant correlations, 
based on Cholesky factorization. 

A stochastic dynamic programming version of the dynamic investment decision problem is also possible to 
present, based on a very flexible labor market, where the number of fire fighting units rapidly can be 
adapted to the sequentially revealed weather situation. However, since time is limited and since such labour
conditions are not relevant in many countries, this will not be presented here.
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Background to empirical weather and fire data
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Thank you Dr Zohreh Mohammadi
for very valuable data and information!



Dynamic and stochastic properties of air 
temperature, relative humidity and wind speed

62

The following parameter estimations related to dynamic and 
stochastic properties of air temperature, relative humidity and 
wind speed, can be used in the fire fighting capacity optimization
problem. 
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Conclusions

The optimal fire fighting capacity is a dynamically changing function of
several parameters. The optimal solution has been derived and presented
in general form. Comparative statics analysis has been used to show how
the optimal decisions are affected by parameter changes.

Since the optimal decisions are functions of many local cost parameters 
and since different regions have different and dynamically changing
weather parameters, the optimal capacity solutions are not the same in 
different regions.

The general approach presented here should be possible to use in most
countries and regions of our world.
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Thank you very much for 
your time and for 

inviting me to Prague!

Professor Dr Peter Lohmander

Peter@Lohmander.com

http://www.lohmander.com/Information/Ref.htm
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