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• The available empirical data was used to estimate a modified logistic growth
model where stand density, altitude and species mix were considered as
explanatory variables. Logistics growth models have been found useful in
continuous cover forest management optimization and examples of such
studies are found in Lohmander [3] and Lohmander and Mohammadi [4].

• The general dynamics of forests based on such models was analyzed and
dynamic equilibrium conditions (stand densities and species mixes) for
different altitudes were determined.

• In some cases, dynamic multi species model parameters are possible to
determine via steady state observations of unmanaged forests.

• Optimization of management decisions in a changing and not perfectly
predictable world, should always be based on adaptive optimization.
Lohmander [2] describes these principles and typical implications for
optimal forestry decisions. Adaptable logistic growth functions work well in
such cases.
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Part 1.

• The available empirical data was used to estimate a modified

logistic growth model where stand density, altitude and species

mix were considered as explanatory variables. Logistics growth

models have been found useful in continuous cover forest

management optimization and examples of such studies are found

in Lohmander [3] and Lohmander and Mohammadi [4].
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The available 
empirical data 
was used to 
estimate a 
modified 
logistic growth 
model where 
stand density, 
altitude and 
species mix 
were 
considered 
as explanatory 
variables.

Stand density
(m3/ha)

Growth (m3/ha/year)

Definitions

x = Stand density (m3/ha)
s = Intrinsic growth rate
c = Carrying capacity (m3/ha)
h = Altitude (meters)
k = Altitude parameter

At sea level

1000 meters above sea level

5



Annual growth as a function of stand density and elevation

Peter Lohmander 140730

Below, we find that the annual growth can be expressed as a quadratic function of stand density. 

Furthermore, growth is (most likely) reduced with elevation.

 (The elevation effect is however not statistically significant at the 95% level.)

dX/dt = sX(1-X/K) + kE

X = Stock level (m3/ha)

E = Elevation (m)

s = 0,019971

K = 767 (m3/ha) (Carrying capacity at sea level)

k = -0,00065 (m3/ha/year/m)
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Regressionsstatistik

Multipel-R 0,998098891

R-kvadrat 0,996201397

Justerad R-kvadrat 0,870251746

Standardfel 0,203872045

Observationer 11

ANOVA

fg KvS MKv F p-värde för F

Regression 3 87,20241936 29,06747312 699,3457225 4,93053E-09

Residual 8 0,332510484 0,041563811

Totalt 11 87,53492984

Koefficienter Standardfel t-kvot p-värde Nedre 95% Övre 95% Nedre 95,0% Övre 95,0%

Konstant 0 #SAKNAS! #SAKNAS! #SAKNAS! #SAKNAS! #SAKNAS! #SAKNAS! #SAKNAS!

VOL 0,019970746 0,004215938 4,736963898 0,001469688 0,010248776 0,029692717 0,010248776 0,029692717

VOL2 -2,60227E-05 1,11457E-05 -2,334774567 0,047804052 -5,17247E-05 -3,20666E-07 -5,17247E-05 -3,20666E-07

Elev -0,000646858 0,000452609 -1,429175526 0,190816399 -0,001690577 0,000396861 -0,001690577 0,000396861
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VOL VOL2 Elev Growth

306 93636 580 3,243756

220,7 48708,49 580 2,903158

320 102400 640 3,34

255,3 65178,09 800 2,910435

202 40804 1010 2,121818

259 67081 1080 2,972727

206 42436 875 2,76

218,5 47742,25 800 2,4

271 73441 850 3

299 89401 680 3,04

188 35344 985 2

Empirical data
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Competition within the forest stands
(This particular slide is based on the results reported by Schutz (2006)
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Area growth of individual trees

y = 0.1586038 xxLN(x) + 0.07038919999 x

x = area of individual tree (before growth) (m2)

y = area growth of individual tree (as area growth during the coming 
ten years divided by 10.) (m2/year)

Regression statistics:

F = 211.8, R2 = 0.872

t(x) = 13.09, t(xxLN(x)) = 9.56

10



11

Regressionsstatistik

Multipel-R 0,93399518

R-kvadrat 0,872346995

Justerad R-kvadrat 0,854159044

Standardfel 0,009200787

Observationer 64

ANOVA

fg KvS MKv F p-värde för F

Regression 2 0,035867397 0,017933698 211,8458311 3,51448E-28

Residual 62 0,005248578 8,46545E-05

Totalt 64 0,041115975

Koefficienter Standardfel t-kvot p-värde Nedre 95% Övre 95% Nedre 95,0% Övre 95,0%

Konstant 0 #SAKNAS! #SAKNAS! #SAKNAS! #SAKNAS! #SAKNAS! #SAKNAS! #SAKNAS!

alallna 1,586037998 0,165941564 9,557810345 8,31339E-14 1,254325538 1,917750458 1,254325538 1,917750458

a1 0,703892375 0,053761805 13,09279651 1,6611E-19 0,596424057 0,811360692 0,596424057 0,811360692



Area growth per tree per year as a function of the 
area before growth (per tree)

Area before growth
(m2)

Growth of area of individual tree
(m2/year)
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Observations and suggestions for future estimations:

1. It would have been valuable to have more variation in the raw
data. Now, the degrees of competition and the stand densities
have low degrees of variation.

2. In the presently analyzed raw data, there are correlations
different from zero between the possibly explaining variables
”direction” and ”altitude”. In the future, such correlations should
be removed.

3. In the present data, there are also correlations different from zero
between species and elevation. For instance, Beech is almost only
found at the highest elevations. 
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Part 2.

• The general dynamics of forests based on such models was

analyzed and dynamic equilibrium conditions (stand densities and

species mixes) for different altitudes were determined.
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A dynamic two species model with competition
(A system of two ”extended logistic models”)
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CASE 3. ( ) 0; 0; 0

( ) 0; 0; 0
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CASE 3 and 4: Interior equilibrium equations

( ) 0; 0; 0

( ) 0; 0; 0
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CASE 4. ( ) 0; 0; 0

( ) 0; 0; 0
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Observation:
The equilibrium is 
a function of the 
initial conditions. 
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CASE 3b. ( ) 0; 0; 0

( ) 0; 0; 0

x x xx xy x xx xy
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Observation:
Some species are more
sensitive to changes
in h than others. The growth
function of x is negatively
affected by h but the 
equilibrium value of x still 
increases if h increases. 
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Part 3.

• In some cases, dynamic multi species model parameters are possible to

determine via steady state observations of unmanaged forests.

• If we can observe x and y in several equilibria, we can in some cases
estimate relations between the parameters.

• We can introduce altitude and direction in the ”parameters” and
evaluate the equilibria at different altitudes and directions.

• If we can observe x and y in several equilibria, at different altitudes and
directions, we can in some cases estimate relations between the
parameters and simultaneously determine the species specific
sensitivities to altitude and direction.
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Part 4.

• Optimization of management decisions in a changing and not

perfectly predictable world, should always be based on adaptive

optimization. Lohmander [2] describes these principles and

typical implications for optimal forestry decisions. Adaptable

logistic growth functions work well in such cases.

23



Lohmander and Mohammadi (2008)
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