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ABSTRACT

The analysis concerns determination of the optimal present extraction of a natural resouce and how this is affected by different
kinds of risk in the future. The most general definition of increasing risk, according to Rothschild and Stiglitz, is used. It can
be applied to all types of statistical distributions. The approach is much more general than, for instance, increasing variance.
The analysis is performed via general function multi dimensional analyical optimization and comparative dynamics analysis
in discrete time. It is found that most of the analytical results can be derived via comparative dynamics in a system with
three equations in combination with supporting general function analysis. The general analytical results are illustrated via
computer solutions to numerically specified special cases.

Keywords: Optimal stochastic control; Risk; Natural resource management; Forestry; Third order derivatives.
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* |In the following analyses, we study the solutions to maximization
problems. The objective functions are the total expected present values. In
particular, we study how the optimal decisions at different points in time
are affected by stochastic variables, increasing risk and optimal adaptive
future decisions.

* |n all derivations in this document, continuously differentiable functions
are assumed. In the optimizations and comparative statics calculations,
local optima and small moves of these optima under the influence of
parameter changes, are studied. For these reasons, derivatives of order
four and higher are not considered. Derivatives of order three and lower
can however not be neglected. We should be aware that functions that are
not everywhere continuously differentiable may be relevant in several
cases.



Introduction with a simplified problem

Objective function:

y(x)=P(f(x)+g(x,h))+@-P)(f(x)+g(x,0))

Definitions:

X Present extraction level

y(X) Expected present value (expected discounted value) of present and future extraction

f (X) Economic value of present extraction

h Risk parameter

P Probability that the expected present value of future extraction is affected by the risk parameter h

g(x, h) Expected present value of future extraction (in case the expected present value of future extraction is affected by risk parameter h)

g(x,0) Expected present value of future extraction (in case the expected present value of future extraction is not affected by risk parameter h)



The objective function can be rewritten as:

y(x) = f(x)+Pg(x,h)+{1-P)g(x,0)

Let us maximize Y(X) with respect to X . The first order optimum condition is:

dy _df09, pdgxh) o pd9(60)
dx dx dx dx

Optimal values are marked by stars. X is assumed to exist and be unique.
d*y

W<O

How is the optimal value of X , X*, affected by the value of the risk parameter h, ceteres paribus?

Differentiation of the first order optimum condition with respect to X and h gives:

2 2
d(9¥)—dydf+‘jydh:o

dx ) dx? dxdh
2 2
9Y g = 9Y gy
dx dxdh




2 * 2
d—g <0|= sgn di =sgn d y
dx dh dxdh

d’y szg(x,h)

dxdh  dxdh
P>0
* 2
dh dxdh
Result:
2
<0 if d"g(x,h) <0
dxdh
* 2
dx 0 if d g(x,h):0
dh dxdh
2
>0 |if M >0
dxdh

How can this be interpreted?

Our objective function was initially defined as:
y(x)= £ (x)+Pg(x,h)+(1-P)g(x,0)

Let us define marginally redefine the optimization problem:

y(x) = f(x)+ PK(L(x),h)+ (21— P)K(L(x),0)



K(L(x),h)=g(x,h)
Here, Kreplaces g and we have the function L(X) that represents the resource available for future extraction as a function of the present extraction level.

With growth and/or without growth, we usually find that:

(;—L<0
X
d?f

Wd)
d?K
dL?

The first order optimum condition then becomes:

ﬂ_ﬂ{pwﬂl_mdK(L(X),O)jd_LZO

<0

dx  dx dL dx

A special case is when there is no growth of the resource. Then, d_ =-1.
X

Then, we get:

df (P ARLOOR) ) py dK(L(x),O)j

ax dL dL

This means that the expected marginal present value of the resource used for extraction should be the same in the present period and in the future. Then, if

d*K(L,h) dK (L(x), h)

dLdh >0, and the value of the future risk parameter h increases, this makes the expected marginal present value of future extraction, m

increase.



2
df . . . . . . . *
Then, — also has to increase. Since —- < 0 , the only way to make the first order optimum condition hold, is to reduce the present extraction level, X .

dx dx?
d*f
Since d? <0, & increases if X is reduced. Then, the expected marginal present values of present and future extrations can again be set equal.
2
<0 if M >0
dLdh
* 2
o] o 4N
dh dLdh
2
>0 if d°K(L,h) <0
dLdh

This illustrates the earlier found result:

2
<0 if g—9£§£D-<0

dxdh
* 2
X J_o 5 dl9h)
dh dxdh

2
S0 if d9h) g
dxdh




Probabilities and outcomes:

Now, let us more explicitly define increasing risk and derive the conditional effects on the optimal value of x. In the next period, the outcome of a stochastic
variable, S, will be known. This stochastic variable can represent different things, such as growth, price, environmental state etc.. More explicit cases will be
defined in the later part of this analysis.

The original objective function was:
y(x)=P(f(x)+g(x,h))+@A-P)(f(x)+9g(x,0))

Now, we get this objective function:

Y0 = 100+ X 4505, 0(h,5)

The objective function y(x) is the sum of the expected present values of present and future extraction, before future stochastic outcomes have been

observed. y(x) is a function of the extraction level X in the first period, period 1.
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Increasing risk:

Definitions:
é(s.) Probability that the stochastic variable takes the value S; in period 2.
(The decision concerning x is taken in period 1, before S; is known.)
S, NS, Two particular values the stochastic variable §. S, <§,
I h During a "mean preserving spread”, S, decreases by h and S, increasesby h. h>=0. I
¢ ¢=¢(s,)=¢(s,)>0
E(ds) Expected change of § as a result of a mean preserving spread. E(ds) = —¢(s,)h+ ¢(s,)h =0
o(h,s.) The change of S, as a result of a mean preserving spread.

(%, s, o(h,s;))

Expected present value of future extraction when the value S; is knownj (Of course, x and h are also known.)

12
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A mean preserving spread (MPS) according to Rotschild and Stiglitz.

"Probability density" is moved from the center of the distribution to

the tails in such a way that the expected value of the stochastic variable
is not changed.
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| | o(h,s)
1 0
u -h
v :I-h
o
Remark:

An almost identical analysis could be made with even more general mean preserving spreads, such that] E(ds) = —¢(s,)h, + #(s,)h, =0 .[Then, S, would
be reduced by h,and S, would be increased by h, .

h _¢(s)
HoIN, =g ) and =2

In such a case, we would not need the constraint ¢(S,) = ¢(S,) . The notation would however become more confusing and the results of interest to this

analysis would be the same as with the present analysis.

Let us define the function 77(X, S) , as the expected present value of future (from period 2) extraction as a function of X and of the stochastic variable §,
adjusted by the increasing risk in the probability distribution via the mean preserving spread.

S, =S,—h

uz

s, =S,+h

V2
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n(%s)=(xs;,oh,s)) v

[EAIPNEY

77(X13 h) ¢(X’ u’a)(h1su))

n(x,s, +h)=p(x,s,,o(h,s,))

n(xs,,) = o(xs,, o(h,s,))

n(xs,, ) =p(x,s, o(h,s,))

First order optimum condition:

y df dgo(x,s,,co(h,s,))
dx  dx Z‘¢ dx =0

A unique interior maximum is assumed:

u df dgp(xsw(hs))
=

d’y d*p(x,s,, w(h,s,))
dxdh Zﬂsi) dxdh

&y dpxs,ehs) o d(s,e0.s,)
aah S g ST
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P(X,8,, (N, s,)) = (s, (s,,h)) =n(x,s, —h)

p(xs,,0(h;s,)) =n(xs,,(s,, ) =n(x,s, +h)

d?y [ d*n(xs, (s,.h) d*n(x,s, (s,.h))
— 2 + 2
dxdh ¢ dxdh dxdh

2

Can the sign of be determined ? (We remember that h>0.)

dxdh
d’y _} d*n(xs, (Su,h))+d277(x,svz (s,.h))
dxdh dxdh dxdh
d’y ; d2p(x,s, ) ds, d%p(x,s,) ds,
= 2 2 + > )

dxdh dxds dh dxds dh
dzy - d’n(xs,) d%p(x,s, )

) =¢ —2(—1)+—2(+1)
dxdh dxds dxds
d’y _ _dzn(x,su2)+d277(x,svz)
dxdh dxds dxds

(s, <s)A(h20))= (s, <5, )
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The sign of this third order derivative
determines the optimal direction of
change of our present extraction level
under the influence of increasing

risk in the future.
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How can these results be interpreted?

dn
d?| =4
d’n (dx)

dxds?  ds?

We note that S/l is the derivative of the expected present value of future (from period 2) extraction as a function of X with respect to the present
dz

dx
d2 (dnj
3
dd dnz = ;r C:X >0, then ™ is a strictly convex function of the stochastic variable. Then, Jensen’s inequality tells us that the expected
Xds S X

extraction level. If

dn . . . . . . . o d?
value of 2n increases if the risk of the stochastic variable increases. Hence, if the risk increases and 7

>0, itis rational that X increases.
dx dxds

2

3 3
dn <0, X decreases. If the risk increases and d’r

dxds dxds

=0, X remains unchanged.

Furthermore, if the risk increases and

2 2
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d*n(x,s)
dxds?

(=) t O means that the marginal value of the resource used for present extraction increases (is unchanged) (decreases) in relation to the

<

expected marginal present value of the resource used for future extraction, in case the future risk increases.

Then, it is obvious that the present extraction should increase (be unchanged)(decrease) as a result of increasing risk in the future.

d’n(x,s) d*n(x,s)

Obviously, dX—dS’Z is of central importance to optimal extraction under risk}In the next sections, we will investigate how W is affected by multi

period settings and dynamic properties such as stationarity in the stochastic processes of relevance to the problem. Different constraints such as extraction
volume constraints may also affect the results, in particular in multi species problems.

In order to discover the true and relevant effects of future risk on the optimal present decisions, it is necessary to let the future decisions be optimized
conditional on the outcomes of stochastic events that will be observed before the future decisions are taken. The lowest number of periods that a resource
extraction optimization problem must contain in order to discover, capture and analyze these effects is three.

For this reason, the rest of this analysis is based on three period versions of the problems. With more periods than three, the essential problem properties
and results are the same but the results are more difficult to discover because of the large numbers of variables and equations. Earlier studies of related
multi period problems have been made with stochastic dynamic programming and arbitrary numbers of periods. Please consult Lohmander (1987) and
Lohmander (1988) for more details.

19



Contents:

1. Introduction via one dimensional optimization in dynamic
problems, comparative statics analysis, probabilities, increasing
risk and the importance of third order derivatives.

2. Explicit multi period analysis, stationarity and corner solutions.

3. Multi period problems and model structure with sequential
adaptive decisions and risk.

4, Optimal decisions under future price risk.

5. Optimal decisions under future risk in the volume process

(growth risk).
6. Optimal decisions under future price risk with mixed species.



Towards

multi
period
analysis

Marginal

resource value |

In period t

= el Expected marginal
3
: { resource value
In period t+1

L . | . N

] hy T % 1

1 ]

[ Vi 1
Figure 1.

At time t, an arbitrary period, ¢t is maximized. ¢t is the sum of

t( ), the present value of the profit in period t, and w (t+1,.),

the expected present value of the profits in the periods t+1, t+2,..
Optimal decisions are assumed in the periods t+l,...,T.
Hence, ¢, is the expected present value at time t of the profits in the
periods t, t+l,...,T when optimal decisions are assumed in the periods
t+1,...,T. The maximization problem is :

i *
Max ¢t = e rtst(ht, Pt) + W (t+1. Ptn !t)
ht.!t
s.t h + !t = vt
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The graph shows a situation where the expected price in the future

periods is the same as the revealed price in period t. (Price is a
stochastic process called a Martingale.) Then, if the price in period

t increases, the price is expected to increase also in the future periods.
It is possible that the optimal harvest level in period t is not an
increasing function of the price in period t in case price is a Martingale.
However, if price is stationary around a predictable trend, the optimal
harvest level in period t is generally an increasing function of the

price in the same time period.
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Optimization in multi period problems

The multi period problem

We maximize Z, the total expected present value. R, (.) and C,(.) denote discounted revenue and cost functions in period t.

Now, we introduce a three period problem. In period 1, X, the extraction level, is determined before the stochastic event in period 2 takes place. In period
2, the outcome of the stochastic event is observed before the extraction level is period 2, X,, is determined. With probability @, the discounted price in
period 2 increases with hin relation to what was earlier assumed according to the revenue function. With probability (1— @), the discounted price in

period 2 decreases by h. In the first case, we select X, = X,, and in the second case, we select X, = X,,. The resource available for extration in period 3, X,,

is of course affected by the decisions in period 2. If X, = X,,, then X, = X;,. If X, =X,,, then X, =X,,.
L Rl(x ) C (Xi) + / \ One index corrected
+ o(R,(Xy) +hXy —C,(X%,0))+  (1— @) (R, (X,) —hx,, —C,(Xy,)) 150606

+ a)(R3(X31)_C3(X31)) + (1—a))(R3(X32)—C3(X32))

We may also study the effects of risk in the resource volume process, growth risk, with the same basic structure. Then, g serves as the risk parameter. With
some probability, the volume increases by g and with some probability, the volume decreases by @, in relation to what was earlier expected.

26



Let us study a special case:

max Z

subject to

X+ Xy +%5 = A0
ax, + Xy, + X, = A— (g 4mmm

We note that we have five decision variables. In period 1, we only have one decision, the optimal extratction level, X, . In period 2, we have two alternative

optimal extraction levels, X,, or X,,, depending on the outcome of the stochastic event. In period 3, the optimal extration level X,, or X,,, is conditional on
all earlier extraction levels and outcomes.

We may instantly solve for X;, and X,, .
Xy = A—aX — X, +0
Xy = A—aX, — X, =0

27



() =R ()-C()

VA = m(X)+
+ a)(72'2(X21)-|-hX21)+ (1_6‘))(72-2(X22)_hX22)
+ or(Xy) + (1-w)m,(X;,)
Z = m)+ ] !

+ a)(ﬂz(X21)+hX21) + (1—(())(722(X22)—hX22)
+ orn,(A-ax -pX,+09)+ (Q-w)r,(A-ax —[X,—9)

1 ]
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Three free decision variables and three first
order optimum conditions

Optimization:

We have three first order optimum conditions since two of the five decision variables can be determined via the constraints and the other decision variables.

dz dz dz
=0, =0 and —— =0. These may be expressed as:

dx, dx,, dx,,

The first order optimum conditions are:

29



d_Z: dﬁl(xl)_a)ad7Z3(A—05X1—,3X21+g) _(1_0))0[d72'3(A—06X1—,3X22—g) —0
dX1 dxl dX3 dXB

dZ - o dﬂ'z(le)_l_h . a)ﬂdﬂ3(A—0[X1_ﬂX21+g):O
dx,, dx, dx,

dz _ (1—w)(dﬂ2(x22)—hj B (1_w),8d7r3(A—aX1—,5'X22—9):O



Let us differentiate the first order optimum conditions with
respect to the decision variables and the risk parameters:

d’z . d°Z . d’z R d°Z

dx, + dx,, + ———adx + dg=0
a0 ke, 2 dxdxy, A dxdg
2 2 2 2 2
a7 dxl*Jr—OI 22 dx,, + a7 dx,, + a7 dh+ a7 dg=0
dx,,dx, dx,, dx,,dx,, dx,,dh dx,,dg
2 2 2 2 2
d°z dx,” d°z d21*+—d szx22*+ d°z dh + a7z dg=0

+ X
dx,,dx, dx,,dx,, dx,, dx,,dh dx,,dg
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The effects of increasing future price risk:

Now, we will investigate how the optimal values of the decision variables change if h increases.

=w>0
dx,,dh
2
a°z =—(1-w)<0
dx,,dh
1
w==
2
_ dx1* _ 10
[D] dle* - —Edh
_dxzz*_ 1
+=dh
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af 4°7, (%)
2 dx’

ofp d°x, (X32 )
2 dx/’




dx, _ap |(d 7[3( 31) dzﬂz(xzz)_i_ﬂz d27z'3(X32) B d27z'3(X32) dzﬂz(le)_l_ﬂz d27z'3(X31)
dh 8D dx,” dx,’ dx,” dx,” dx,’ dx,”
Simplification gives:

o ap [(dm () | 077, (%) | (077 () | 42 (%a) |
dh 8\D\ odx dx,’ dx,” dx,” )

A unique maximum is assumed.

ID|<0




Observation:

(5o

d27z2 (le)

2
dx,

I

d 27r3 (X32)

2
dx,

We assume decreasing marginal profits in all periods.

d*z, () 0

d*,(.) -0
dx,’

H

d27r2 (Xzz)

d27z3(X31)

2
dx,

I

2
dx,

)
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The following results follow from optimization:

(h>0)= ((Xy > X ) A (Xgy < X3))

d°z,
dx,’
d°z,
dx,’

d°z,
dx,’

<0 A

=0 A

>0 A

3
d°z,
3
dx,

3
d°z,

3
d°z,

3
dx,

<Oj

> > 3







The results may also be summarized this way:

3 3
d7z32£0 A d7z33£0 A
dx, dx,

3

(d 723220 N

dx,
3 3
dﬂZZO A dﬂ?’ZO A
dx,’ dx,’
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P

P+a P+2A

d? diK
d’k ~ ldL _d2/1<0
dLdP? dP? dP?

E(1)=E (d—Kj decreases
dL

If therisk in P increases.

The expected future marginal
resource value decreases from
increasing price risk and we should
increase present extraction.
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Figure 4.a.
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P

P+A

P+2A

d? diK
d°K dL ) d°A
= = >0

dLdP>  dP?  dP?

E(/i) _ E(d—Kjincreases
dL

If therisk in Pincreases.

The expected future marginal
resource value increases from

increasing price risk and we should

decrease present extraction.
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Some results of increasing risk in the price
process:

* If the future risk in the price process increases, we should increase
the present extraction level in case the third order derivatives of
profit with respect to volume are strictly negative.

* If the future risk in the price process increases, we should not change
the present extraction level in case the third order derivatives of
profit with respect to volume are zero.

* If the future risk in the price process increases, we should decrease
the present extraction level in case the third order derivatives of
profit with respect to volume are strictly positive.
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The effects of increasing future risk in the volume process:

Now, we will investigate how the optimal values of the decision variables change if g increases.
We recall these first order derivatives:

d_Z: dﬂl(Xl)_a)ad7T3(A—05X1—,BX21-I—g) _(l_a))adﬂ-:%(A_aXl_ﬂXZZ_g) _0
dx, dx, dx, dx,

dz _ a)(d%(le)+hj — op B AP t0)
dx,, dx, dx,

dZ _ (1_w)(d”2(xzz)_h] B (1_w)ﬂd72'3(A—05X1—,3X22—g):O

dX,, 2 dx,
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d?Z d°7z5(A—aX — %, +9) d°73(A—aX — X, — 9)

_ + (1-
dedg dx;’ e s
d?z _ _wﬁdzﬂg(A_a)ﬁ_IBXm"'g)
dx,,dg dX,”
2 2 _ _ _
d’z _ +(1—60),3d (A ax12 P ~9)

dx,,dg dx,



With more simple notation, we get:

2 2
a7z _ —a)a—d 7[3()2(31) +(1- w)
dx,dg dx,
d*z _ _a)ﬁdzﬂg(xm)
dx,,dg dx,’”
d*z

d°7,(X,)
- 41— 3\ A3
dodg . Oy

o d 27[3 ()2(32)

dx,

We have already differentiated the first order optimum conditions with respect to the decision variables and the risk parameters:

2 2 2
3§dﬁ+ d'z dx,, d°z
X,
d?z . 4

2
a°z dx +——dx,
dx,,dx, dx,,

2
d’z dx,” +

dx,,dx, dx,,dx,, dx,,

+ -
dx, dx,, dx,dx,,

dx,,

_|_ —_
dx,,dx,,

4 . d’z
dx,, +——

2

*

dx,,

dx,,

*

*

d°zZ
_|_—
dx,,dh

d°Z
_|_—
dx,,dh

dh +

dh+

d2z
dx,,dg

d?z
dx,,dg

dg=0
dg=0
dg=0
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Now, we will investigate how the optimal values of the decision variables change if g increases. (dh =0 )

d’Z , . d?z . dZ X d?Z
~dx,  + dx,, + dx,, =— dg
dx, dx,dx,, dx,dx,, dx,dg
2 2 2 2
d°Z dx d 22 dx, "+ d°Z dx,” = d“Z dg
dx,,dx dx,, dx,,dx,, dx,,dg

d?Z . d?Z . d?Z . d?Z
dx, + dx,, +——dx,, =— d
dx,,dx, dx,,dx,, dx,, dx,,dg







+g dzﬂs (X31) _a d272'3(X32) af d2ﬂ3 (Xsl) af d272-3 (X32)
2 dx’ 2 dx,’ 2 dx; dx,
/4 d*77;(%sy) 1 d*z, (le) N p’ d27z3(X31) 0
2 dx’ 2 dx,’ 2 dx’
_ﬁdzﬂs(xsz) 0 ldzﬂz(xzz)_l_ﬂz d27z'3(x32)
dx,” 2 dx, 2 dx, 2 dx
dg D
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Let us simplify notation:

_ d 27T2 ()
Ul)= dx,’
_ d 272'3 ()
W)= dx,’
(04 (W (X31) -W (st)) ((Zﬂ\N (X31)) (a,B\N (st))
(BW(xy,)) (U (%) + W (x5,)) 0

dx, {1) (=AW (%3,)) 0 (U (%) + BW (%5,) )

D]



o (W (Xgy) =W (X)) (U (%50) + BW (x31) ) (U (X,) + BW ()
d5 8D (W (%2)) (AW (%51)) (U (x20) + BW (xs,)
— (AW (X3,)) (U (X51) + BW (X)) (=W (X))

Now, we simplify notation even further:

u; =U(x;)
w; =W (X;)
o (W, —WZ)(u1 +,82W1)(u2 +,82W2)

dg 8[| ~(apw,)(Aw)(u, + Fw, )
+(apw;) (1 + W) (Aw)




p=a(w, —W2)<u1 +ﬂ2W1)<U2 +,82W2)—(a,8w1)(ﬂw1)(u2 +ﬁ2W2)-|—(a,BW2)(ul +ﬂzwl))(ﬂwz))

We once again simplify notation to the following expression (where all variables appear in the same order as before and all indices are removed):
¢ =a(w - X)(u + bbw)(s + bbx) - (abw)(bw)(s + bbx) + (abx)(u + bbw)(bx)

This expression can instantly be simplified to:

@ = a(suw - X(b*w(s - u) + su))

This can be rearranged to:

¢ = a(su(w-x) - x(b*w(s - u)))

$ = a(su(w-x) + b*wx(u-s))

Now, we slowly move back to our original notation:
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= a(uluz(wl'wz) + frw,w, (ul'uz))

¢:05< U(X21)U(X22)(W(X31)-W(X32)) + ,BZW(X31)W(X32)(U(le)'U(Xzz)) )

dzﬂz (X,) d 272'2 (Xy,) dzﬂs (Xa1) B d27r3 (X32)
dx,’ dx,’ dx,” dx,”
p=a 2 2 2 2
i d°7;(Xg) d775(X5,) | A7, (X5,) _d 7,(X5,)
dx,” dx,” dx,’ dx,’
Observations:
dx, _ ¢
dg 8|D|

We already know that |D| < 0.
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Results:
3 3
d7[32£0/\ dﬂ; 0| |=>
dx, dx,
3 3
d”,f 0| dﬂ;SO =
dx, dx,
3 3
97 0|a| I <o |
dx, dx,

3 3
d”;ZO/\dﬂ;ZO =
dx, dx,
3 3
97 2 0|a[ L% 50| |
dx, dx,
3 3
97 so|n| T8 50 ||
dx, dx,
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d? diK
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= = <0

dLdv?®  dv?  dv?
E(/i) = E(d—Kj decreases
dL

If therisk inV increases.

The expected future marginal
resource value decreases from
increasing risk in the volume
process (growth) and we should
increase present extraction.
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= = >0

dLdv?®  dv?  dv?
E(/i) = E[d—Kjincreases
dL

If theriskinV increases.

The expected future marginal
resource value increases from
increasing risk in the volume
process (growth) and we should
decrease present extraction.
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Some results of increasing risk in the volume
process (growth process):

* If the future risk in the volume process increases, we should increase
the present extraction level in case the third order derivatives of
profit with respect to volume are strictly negative.

* If the future risk in the volume process increases, we should not

change the present extraction level in case the third order derivatives
of profit with respect to volume are zero.

* If the future risk in the volume process increases, we should decrease
the present extraction level in case the third order derivatives of
profit with respect to volume are strictly positive.
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problems, comparative statics analysis, probabilities, increasing
risk and the importance of third order derivatives.

2. Explicit multi period analysis, stationarity and corner solutions.

3. Multi period problems and model structure with sequential
adaptive decisions and risk.

4, Optimal decisions under future price risk.

5. Optimal decisions under future risk in the volume process

(growth risk).
6. Optimal decisions under future price risk with mixed species.



The mixed species case:

* A complete dynamic analysis of optimal natural resource
management with several species should include decisions
concerning total stock levels and interspecies competition.

* In the following analysis, we study a case with two species, where the
growth of a species is assumed to be a function of the total stock level
and the stock level of the individual species.

* The total stock level has however already indirectly been determined
via binding constraints on total harvesting in periods 1 and 2.

*|We start with a deterministic version of the problem and later move
to the stochastic counterpart.
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ITis the total present value. X, denotes harves volume of species I in period 1.

7T, (X, ) is the present value of harvesting species I in period t.

Each species has an intertemporal harvest volume constraint.
H, denotes the total harvest volume in period t.
These total harvest volumes are constrained in periods 1 and 2,

because of harvest capacity constraints, constraints in logistics or other constraints,

maybe reflecting the desire to control the total stock level.



max 11 =

Period 1 Period 2 Period 3

711 (Xg) + 701 (Xog ) 1705 (Xip) + 7005 (X0 )| H 715 (Xig) + 7755 (Xy5)

S.L.

Xy + PX, + %5 =C
X, + X, + X, =C,
X, + X% =H,

X+ X = Hz
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Consequences:

Xy =Hi =X

Xpo =H, =X,

X3 =€ —ax, — fX,
Xp3 = C,) —aXy, — Xy,

Xp3 = C, _a(Hl _X11) _IB(Hz _X12)




[T =72, (X)) + 7050 (X)) + 7215 (X5 ) + 7055 (X0 ) + 7015 (Xy5) + 705 (Xp3)

IT= 7, (X)) + 7, (Hy = X, ) + 7, (X)) + 7, (H, = X,,)
+ 7,5 (CL —aX, — BX,) + 7,5 (C, —a(H, — %) — B(H, — X))



Now, we move to a stochastic version of the same problem. ® is the expected total present value under the influence of stochastic future events and
optimal adaptive decisions. With probability ¢, the discounted price of species 1 increases by h in period 2 and with probability (1—¢), the price

decreases by the same amount. We define this a ”mean preserving spread” via the constraint ¢ = (1—¢) = %

Xitp =Harvest volume in species i, at time {, for price state p

A: Consequences for harvest decisions in periods 2 and 3 of a price increase of species 1 in period 2:

Consequences for harvest decisions for species 1:
If the price in period 2 of species 1 increases by h, then we harvest X, = X, in period 2. In period 3, we get the conditional harvest X ; = X5, .
Consequences for harvest decisions for species 2:

If the price in period 2 of species 1 increases by h, then we harvest X,, = X,,, in period 2. In period 3, we get the conditional harvest X,; = Xo,;.



B: Consequences for harvest decisions in periods 2 and 3 of a price decrease of species 1 in period 2:

Consequences for harvest decisions for species 1:
If the price in period 2 of species 1 decreases by h, then we harvest X, = X,,, in period 2. In period 3, we get the conditional harvest X3 = Xgp-
Consequences for harvest decisions for species 2:

If the price in period 2 of species 1 decreases by h, then we harvest X,, = X,,, in period 2. In period 3, we get the conditional harvest X,; = X,



® = 731 (X)) + 7 (Hy — X4
+¢[(7Z'12 (Xi21) + Xy + 75, (H, — X121)) T (7713()(131) + 7723()(231))]
+(1-9) [(7712 (Xi22) =Xy + 7, (H, — X122)) + (7713()(132) T 7723(X232)):|

X3 =G —aX, — X,
X5 = C, —a(H, — %) — B(H, — X,,)

X3 = Cp —aX, — X,
Xo50 = C, —a(H, —x,) — B(H, —X,)



N |~

L=20= 2m,(X,)+27m,(H,—x,)

T (7[12 (Xpo1) +hXppy + 775 (H, — X121)) T (7713()(131) T T3 (X231))
T (7[12 (Xi55) =Xy + 77,5 (H, - X122)) T (7713 (Xi3p) + 73 (Xzsz))

X3 =C—aX, — BX,
X = C, —a(H, — %) — B(H, —x,,)

Xigp = Cl —ax, _/Bxlzz
X0 =C, —a(Hy —x;) — B(H, —X2,)



L=20= 2m,(x,)+27,(H,—X;,)
+ 725 (Xig1) + Xy + 705 (H, = X31)
+ 7215 (Xi25) = Xy + 70 (Hy = X15)
+ 7013 (Xia1) + 755 (Xoa1)

+ 715 (Xiap) + 755 (Xos,)

X3 = C—aX, — X,
X5 = C, —a(H, — X)) — B(H, — X,,)

X3 = Cp—aXy — BXy,
X0 = C, —a(H; —X) — B(H, —X,)



L =20 =

27, (X)) + 27, (H — X,)

+ 7015 (Xig1) + NXpy + 7755 (H, —X051)

+ 7015 (Xig5) = NXyp + 7 (Hy — Xi55)
+713(Cy — Xy, — BX;5)

+7,,(C, —a(H, — X)) — B(H, —X,5))
+713(Cy — Xy — X))

+7,5(C, —a(H; — X)) — B(H, — X))



Now, there are three free decision variables and three first
order optimum conditions:

(?—Xzﬂ = 27[1-1()(11) - 277'21(H1 - X;)
—057T1I3 (C,—ax, - Bx,)
+0£7Z'23(C2 —a(H; —x,) - B(H, — X))
—am,(C, — axy — BXy,)
+ a7y (C, —a(H, = %,) = B(H, = X,5,)) =0
dz

@ = 7[1I2(X121)+ h_”'zz(Hz — Xi21)

_ﬂﬁlls (C,—ax, — BXy,)
+ﬂ7z-l23(C2_a(Hl_Xll)_lB(HZ_XHl)) =0

dz
dx,,,

= 7[1-2()(122) —h _7['22(H2 — Xi2)

_ﬂﬂ-ll:%(cl — X%y — i)
+,B77I23(C2_a(Hl_xu)_,B(Hz_Xlzz)) =0



27, (%) + 27, (H, — x,)
+a’7r,,(C, —aXy, — BX)
+0° 75 (C, —a(H, = %,) — B(H, = X,1))
+0° 715(Cy — X, — BX,y,)
+a’7,,(C, —a(H,—x,) - B(H, —X,,))

[aﬂ”£3(cl —aX, — BX,)
"‘aﬂﬂ;:s(cz —a(H,—x,)— B(H, —x3))

(aﬁﬁlus (C,—ax, — BXy,)
+05,B77;3(C2 —a(H; —x,) - B(H, — %))

[aﬁﬂ-l"S(Cl —aX, — BXy)
+05,B7Z;3(C2 —a(H; —x,) - B(H, — %))

+ﬂ27Z'1“3 (C,—aX, — fBXy)
+ﬂ272';3(C2 —a(H; —x,) - B(H, — X))

j :

j 7[£2(X121)+7T;2(H2 —Xy5)

J {aﬂﬂ'l"s (C,—ax, — BXy,)
"‘051877;3((:2 —a(H,—x,)— B(H, — %))

7[1"2 (X) + 77;2("'2 — X120)
+ﬁ2771"3 (C,—ax, - BXy,)
+ﬂ2”;3(cz —a(H; —x,) = B(H, — %))

l




Dy D, Dy
‘ D‘ =\D,, D,, O
Dy, 0 Dy

‘D‘ =D}, D,, D33 — D, Dy, D33 — D13 D,, D31 <0
gty
dx,dh | _ _
d°Z
dx,,,dh

d°Z - T
| dx,,,dh




g | [0
[D]| dx,, |=|—1dh
dx,, | |+1dh
0 D, D
-1 D, O
dx;, _ 1 0 Dy _ D, Dy — DD,
dh D, D, Dg; ‘D‘
D, D, O
D, 0 D,

U = D12 D33 — D13 D22




U — [aﬂﬂlus (C, —axy,; - fX,)
+0fi7y(C, —a(H, = %;) = B(H, = X,,))

1

05/8771"3 (C,—ax, — BXy,,)
+05,B7T;3(C2 —a(H,—x;)— B(H, — X))

]

/7[1"2 (Xp0) + 77;2 (H, —Xp,,)
"'132771"3 (C, —axy — BX%y)

J

\+IBZ7Z;3(C2 _a(Hl B 11) _:B(Hz B X122))/

/771"2 (Xz1) + 77;2 (H, —X5)
"‘,82771"3 (C,—ax, — BX,)

\

\+IB277;3(C2 —a(H; —x;)-B(H, - Xlzl)))



Assumptions:

Ts <O Ay <0

In order to produce strong and relevant results, we assume that:
T 20 A Ty ~0

and even

7 =0Amy=0

T T, T, T, ) .
In general, one should expect that |—%3| <1v ||« land |=£|<1v |=2| « 1, since the effects of volume increases on
7o TTyp Ty Ty

the marginal profit level are usually less dramatic in the long run than in the short run. In the long run, there is more time available to adjust infrastructure
capacity, logistics, labour force and industrial capacities to large volume changes.

k>0Ay>0

Consequence:



U= (_K)Kﬂ'l"z(xm) +7Z';2(H2 — Xp5,)

—7
_(_K)(ﬂlnz(xm) T ”;2(H2 — Xy1)
=Y
U= U; :(”1"2()(121) +7Z';2(H2 — X121))_(771"2 (%i22) +7T;2(H2 - )(122))
U= U; :(”1"2()(121) _771"2 (X122))+<7T;2(H2 — Xi21) _”;2(H2 - X122))



Observations:

(X121 > X122) N\ (Hz — Xy < H, _X122)

sgn ( ddxﬁlj =sgn (—_U j
X1 ) _ cqnl — 9% | canl ]
sgn( dhj_sgn( dh)_sgn(u)




Multi species results:

CASE 1:

(ﬂ;zm;):{%w

CASE 2:

dh
CASE 3
(7[12 —ﬂzz):(%—)ﬁl—o
CASE 4
(7:12 < 72'2"2) = (dd)ﬁl >0
CASE 5
(7[12 < 7[22) = (ddﬁl

dL;1>0
dh
dh

o,
dh

o
dh

dL:1<0
dh




Some multi species results:

With multiple species and total harvest volume constraints:

Case 1:

If the future price risk of one species, A, increases, we should now harvest less of this species (A) and
more of the other species, in case the third order derivative of the profit function of species A with
respect to harvest volume is greater than the corresponding derivative of the other species.

Case 3:

If the future price risk of one species, A, increases, we should not change the present harvest of this
species (A) and not change the harvest of the other species, in case the third order derivative of the

profit function of species A with respect to harvest volume is equal to the corresponding derivative of
the other species.

Case 5:

If the future price risk of one species, A, increases, we should now harvest more of this species (A)
and less of the other species, in case the third order derivative of the profit function of species A with
respect to harvest volume is less than the corresponding derivative of the other species.
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1. INTRODUCTION

In real production processes, continuous adjustments of all activ-
itites are mostly not technically possible and would almost never
be economically rational. The optimal extraction problems have
often been studied with optimal stochastic control theory in con-
tinuous time, Then, however, the continuous time assumplion and
the common Wiener process assumption usually imply that deriva-
tives of order three and higher are not needed in the derivations.
“The present analysis proves that, in discrete time, derivations of
optimal decisions under risk have to take the third order deriva-
tives into account. The most general definitions of increasing risk
introduced and analyzed by Rothschild and Stiglitz [4] and [5] are
used, Third order derivatives different from zero are often present
in several parts of natural resource management problems in cost
functions, growth functions and demand functions. Furthermore,
third order derivatives different from zero can be very useful in ap-
proximation of capacity constraints and penalty functions. Earlier
resulis of a similar nature have been derived via comparative dy-
namic analysis within stochastic dynamic programming problems.
Such dervations are found in[1] and [2]. In those studies, you also
find detalied analyses of the effects of stationarity in the stochas-
tic processes. The effects of increasing future risk on the optimal
present extracion level are usually also dependent on process sta-
tionarity. If the processes are stationary, the effects of increasing
risk on optimal present extraction may be guite different from the
case when the processes are nonstationary. These effects are also
described in the present analysis.

2. MAIN

In the first section, the price andfor cost risk in the next period in-
creases, The direction of optimal adjustment of the present extrac-
tion level is then found to be a function of the third order deriva-
tives of the profit functions in later tme periods with respect to
the extract levels. If the si of these derivatives are known
and constant over time, it is possible to determine the sign of the
optimal adjustment of the present extraction level. In the second
section, the resource is growing. The optimal present extraction
level is then studied under the influence of increasing nsk in the
growth process. The direction of optimal adjustment of the present

extraction is found to be a function of the third order derivatives
of the profit functions in later time periods with respect to the ex-
traction levels. ome cases, it is possible to determine the sign
of the optimal adjustment of the present extraction level. In the
third section, the resource contains different species, growing to-
gether. Furthermore, the total harvest in each period is constrained.
The question is how the optimal present harvest of these species is
affected by increasing price nisk in one of the species. Again, it
turns out that the direction of adjustment of the present extraction
is a function of the third order derivatives. In some cases, il is
possible to detern the signs of the optimal adjustments of the
present extraction levels in the different species. An alternative
way to optimize similar but not identical stochastic dynamic multi
species management management problems is reported in [3].
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