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• In the following analyses, we study the solutions to maximization
problems. The objective functions are the total expected present values. In 
particular, we study how the optimal decisions at different points in time
are affected by stochastic variables, increasing risk and optimal adaptive 
future decisions.

• In all derivations in this document, continuously differentiable functions
are assumed. In the optimizations and comparative statics calculations, 
local optima and small moves of these optima under the influence of
parameter changes, are studied. For these reasons, derivatives of order 
four and higher are not considered. Derivatives of order three and lower
can however not be neglected. We should be aware that functions that are
not everywhere continuously differentiable may be relevant in several
cases.
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Introduction with a simplified problem

Objective function: 

   ( ) ( ) ( , ) (1 ) ( ) ( ,0)y x P f x g x h P f x g x      

Definitions: 

x  Present extraction level 

( )y x  Expected present value (expected discounted value) of present and future extraction 

( )f x  Economic value of present extraction  

h  Risk parameter 

P  Probability that the expected present value of future extraction is affected by the risk parameter h  

( , )g x h  Expected present value of future extraction (in case the expected present value of future extraction is affected by risk parameter h ) 

( ,0)g x  Expected present value of future extraction (in case the expected present value of future extraction is not affected by risk parameter h ) 
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The objective function can be rewritten as: 

( ) ( ) ( , ) (1 ) ( ,0)y x f x Pg x h P g x     

 

Let us maximize ( )y x  with respect to x . The first order optimum condition is: 

( ) ( , ) ( ,0)
(1 ) 0

dy df x dg x h dg x
P P

dx dx dx dx
      

Optimal values are marked by stars. 
*x is assumed to exist and be unique. 

2

2
0

d y

dx
  

How is the optimal value of x  , 
*x , affected by the value of the risk parameter h , ceteres paribus? 

Differentiation of the first order optimum condition with respect to 
*x and h  gives: 

2 2
*

2
0

dy d y d y
d dx dh

dx dx dxdh

 
   

 
 

2 2
*

2

d y d y
dx dh

dx dxdh
   

2

*

2

2

d y

dxdhdx

dh d y

dx

 
 
  
 
 
 
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2 * 2

2
0 sgn sgn

d y dx d y

dx dh dxdh

      
        

      
 

2 2 ( , )d y d g x h
P

dxdh dxdh
  

0P   

* 2 ( , )
sgn sgn

dx d g x h

dh dxdh

   
   

   
 

Result: 

2

* 2

2

( , )
0 0

( , )
0 0

( , )
0 0

d g x h
if

dxdh

dx d g x h
if

dh dxdh

d g x h
if

dxdh


 


 


 


 

 

How can this be interpreted? 

Our objective function was initially defined as: 

( ) ( ) ( , ) (1 ) ( ,0)y x f x Pg x h P g x     

Let us define marginally redefine the optimization problem:  

( ) ( ) ( ( ), ) (1 ) ( ( ),0)y x f x PK L x h P K L x     
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( ( ), ) ( , )K L x h g x h  

Here, K replaces g and we have the function ( )L x that represents the resource available for future extraction as a function of the present extraction level. 

With growth and/or without growth, we usually find that: 

0
dL

dx
  

2

2
0

d f

dx
  

2

2
0

d K

dL
  

The first order optimum condition then becomes: 

( ( ), ) ( ( ),0)
(1 ) 0

dy df dK L x h dK L x dL
P P

dx dx dL dL dx

 
     

 
 

A special case is when there is no growth of the resource. Then, 1
dL

dx
  . 

Then, we get: 

( ( ), ) ( ( ),0)
(1 )

df dK L x h dK L x
P P

dx dL dL

 
   
 

 

This means that the expected marginal present value of the resource used for extraction should be the same in the present period and in the future. Then, if 
2 ( , )

0
d K L h

dLdh
 , and the value of the future risk parameter h increases, this makes the expected marginal present value of future extraction, 

( ( ), )dK L x h

dL
 

increase. 
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Then, 
df

dx
 also has to increase. Since 

2

2
0

d y

dx
 , the only way to make the first order optimum condition hold, is to reduce the present extraction level, 

*x .  

Since 

2

2
0

d f

dx
 , 

df

dx
increases if x  is reduced. Then, the expected marginal present values of present and future extrations can again be set equal.  

2

* 2

2

( , )
0 0

( , )
0 0

( , )
0 0

d K L h
if

dLdh

dx d K L h
if

dh dLdh

d K L h
if

dLdh


 


 


 


 

This illustrates the earlier found result:  

2

* 2

2

( , )
0 0

( , )
0 0

( , )
0 0

d g x h
if

dxdh

dx d g x h
if

dh dxdh

d g x h
if

dxdh


 


 


 

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Probabilities and outcomes:

11

Now, let us more explicitly define increasing risk and derive the conditional effects on the optimal value of x. In the next period, the outcome of a stochastic 

variable, s , will be known. This stochastic variable can represent different things, such as growth, price, environmental state etc.. More explicit cases will be 

defined in the later part of this analysis.  

The original objective function was: 

   ( ) ( ) ( , ) (1 ) ( ) ( ,0)y x P f x g x h P f x g x      

Now, we get this objective function: 

1

( ) ( ) ( ) ( , , ( , ))
I

i i i

i

y x f x s x s h s  


   

The objective function ( )y x is the sum of the expected present values of present and future extraction, before future stochastic outcomes have been 

observed. ( )y x is a function of the extraction level x in the first period, period 1. 



Increasing risk:
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Definitions: 

( )is   Probability that the stochastic variable takes the value 
is in period 2.  

  (The decision concerning x is taken in period 1, before 
is is known.) 

u vs s   Two particular values the stochastic variable s . u vs s  

h  During a ”mean preserving spread”, us decreases by h and vs increases by h . 0h  . 
_

   
_

( ) ( ) 0u vs s      

( )E ds   Expected change of s  as a result of a mean preserving spread. ( ) ( ) ( ) 0u vE ds s h s h      

( , )ih s    The change of 
is  as a result of a mean preserving spread. 

( , , ( , ))i ix s h s   Expected present value of future extraction when the value 
is is known. (Of course, x and h are also known.) 
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density



 

i  ( , )ih s  

1 0 

. . 

u -h 

. . 

v +h 

. . 

I 0 

 

Remark: 

An almost identical analysis could be made with even more general mean preserving spreads, such that: ( ) ( ) ( ) 0u u v vE ds s h s h     . Then, us  would 

be reduced by uh and vs  would be increased by vh .  

( ) ( )u u v vs h s h  and 
( )

( )

u v

v u

h s

h s




  

In such a case, we would not need the constraint ( ) ( )u vs s  . The notation would however become more confusing and the results of interest to this 

analysis would be the same as with the present analysis.  

Let us define the function ( , )x s , as the expected present value of future (from period 2) extraction as a function of x and of the stochastic variable s , 

adjusted by the increasing risk in the probability distribution via the mean preserving spread.   

2u us s h   

2v vs s h   
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( , ) ( , , ( , ))i i i i i u i v
x s x s h s s  

  
   

 

( , ) ( , , ( , ))u u ux s h x s h s     

( , ) ( , , ( , ))v v vx s h x s h s     

 

2
( , ) ( , , ( , ))u u ux s x s h s    

2
( , ) ( , , ( , ))v v vx s x s h s    

 

First order optimum condition: 

( , , ( , ))
( ) 0i i

i

i

d x s h sdy df
s

dx dx dx

 
    

A unique interior maximum is assumed: 

22 2

2 2 2

( , , ( , ))
( ) 0i i

i

i

d x s h sd y d f
s

dx dx dx

 
    

22 ( , , ( , ))
( ) i i

i

i

d x s h sd y
s

dxdh dxdh

 
  

2 22 ( , , ( , )) ( , , ( , ))
( ) ( )u u v v

u v

d x s h s d x s h sd y
s s

dxdh dxdh dxdh

   
    
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2
( , , ( , )) ( , ( , )) ( , )u u u u ux s h s x s s h x s h       

2
( , , ( , )) ( , ( , )) ( , )v v v v vx s h s x s s h x s h       

2 2

2 22 _ ( , ( , )) ( , ( , ))u u v vd x s s h d x s s hd y

dxdh dxdh dxdh

 

 

  
 
 

 

Can the sign of 

2d y

dxdh
be determined ? (We remember that 0h  .) 

2 2

2 22 _ ( , ( , )) ( , ( , ))u u v vd x s s h d x s s hd y

dxdh dxdh dxdh

 

 

  
 
 

 

2 2 2 2

2 22 _ ( , ) ( , )u u v vd x s ds d x s dsd y

dxdh dxds dh dxds dh

 

 

  
 
 

 

   2 2

2 22 _ ( , ) ( , )
1 1

u vd x s d x sd y

dxdh dxds dxds

 

 

    
 
 

 

2 2

2 22 _ ( , ) ( , )u vd x s d x sd y

dxdh dxds dxds

 

 

   
 
 

 

 

   
2 2

( ) ( 0)u v u vs s h s s      
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2 3

2

( , )
sgn sgn

d y d x s

dxdh dxds

   
   

   
 

2

*

2

2

d y

dxdhdx

dh d y

dx

 
 
  
 
 
 

 

* 3

2
sgn sgn

dx d

dh dxds

   
   

   
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The sign of this third order derivative
determines the optimal direction of
change of our present extraction level
under the influence of increasing
risk in the future.



How can these results be interpreted? 

2

3

2 2

d
d

d dx

dxds ds





 
 
   

We note that 
d

dx


 is the derivative of the expected present value of future (from period 2) extraction as a function of x  with respect to the present 

extraction level. If 

2

3

2 2

d
d

d dx

dxds ds





 
 
   >0, then 

d

dx


is a strictly convex function of the stochastic variable. Then, Jensen’s inequality tells us that the expected 

value of 
d

dx


increases if the risk of the stochastic variable increases. Hence, if the risk increases and 

3

2
0

d

dxds


 , it is rational that  *x increases. 

Furthermore, if the risk increases and 
3

2
0

d

dxds


 , *x decreases. If the risk increases and 

3

2
0

d

dxds


 , *x remains unchanged. 

18



3

2

( , )
( ) 0

d x s

dxds


 

 
 

  

 means that the marginal value of the resource used for present extraction increases (is unchanged) (decreases) in relation to the 

expected marginal present value of the resource used for future extraction, in case the future risk increases.  

Then, it is obvious that the present extraction should increase (be unchanged)(decrease) as a result of increasing risk in the future. 

 

Obviously, 

3

2

( , )d x s

dxds


is of central importance to optimal extraction under risk. In the next sections, we will investigate how 

3

2

( , )d x s

dxds


is affected by multi 

period settings and dynamic properties such as stationarity in the stochastic processes of relevance to the problem. Different constraints such as extraction 

volume constraints may also affect the results, in particular in multi species problems. 

In order to discover the true and relevant effects of future risk on the optimal present decisions, it is necessary to let the future decisions be optimized 

conditional on the outcomes of stochastic events that will be observed before the future decisions are taken. The lowest number of periods that a resource 

extraction optimization problem must contain in order to discover, capture and analyze these effects is three. 

For this reason, the rest of this analysis is based on three period versions of the problems. With more periods than three, the essential problem properties 

and results are the same but the results are more difficult to discover because of the large numbers of variables and equations. Earlier studies of related 

multi period problems have been made with stochastic dynamic programming and arbitrary numbers of periods. Please consult Lohmander (1987) and 

Lohmander (1988) for more details. 
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Optimization in multi period problems

26

The multi period problem 

We maximize Z , the total expected present value. (.)tR and (.)tC denote discounted revenue and cost functions in period t . 

Now, we introduce a three period problem. In period 1, 
1x , the extraction level, is determined before the stochastic event in period 2 takes place. In period 

2, the outcome of the stochastic event is observed before the extraction level is period 2, 
2x , is determined. With probability  , the discounted price in 

period 2 increases with h in relation to what was earlier assumed according to the revenue function.  With probability (1 ) , the discounted price in 

period 2 decreases by h . In the first case, we select 
2 21x x and in the second case, we select 

2 22x x . The resource available for extration in period 3, 
3x , 

is of course affected by the decisions in period 2. If 
2 21x x , then 

3 31x x . If 
2 22x x , then 

3 32x x . 

 

   

   

1 1 1 1

2 21 21 2 21 2 22 22 2 22

3 31 3 31 3 32 3 32

( ) ( )

( ) ( ) (1 ) ( ) ( )

( ) ( ) (1 ) ( ) ( )

Z R x C x

R x hx C x R x hx C x

R x C x R x C x

 

 

  

      

    

 

 

We may also study the effects of risk in the resource volume process, growth risk, with the same basic structure. Then, g  serves as the risk parameter. With 

some probability, the volume increases by g and with some probability, the volume decreases by g , in relation to what was earlier expected. 

One index corrected
150606



Let us study a special case: 

max Z  

subject to  

1 21 31x x x A g      

1 22 32x x x A g      

We note that we have five decision variables. In period 1, we only have one decision, the optimal extratction level, 
1x . In period 2, we have two alternative 

optimal extraction levels, 
21x or 

22x , depending on the outcome of the stochastic event. In period 3, the optimal extration level 
31x or 

32x , is conditional on 

all earlier extraction levels and outcomes. 

 

We may instantly solve for 31x and 32x . 

31 1 21x A x x g      

32 1 22x A x x g      
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28

(.) (.) (.)t t tR C  

   
1 1

2 21 21 2 22 22

3 31 3 32

( )

( ) (1 ) ( )

( ) (1 ) ( )

Z x

x hx x hx

x x



   

  

 

    

  

   
1 1

2 21 21 2 22 22

3 1 21 3 1 22

( )

( ) (1 ) ( )

( ) (1 ) ( )

Z x

x hx x hx

A x x g A x x g



   

      

 

    

        



Three free decision variables and three first
order optimum conditions

29

Optimization: 

We have three first order optimum conditions since two of the five decision variables can be determined via the constraints and the other decision variables. 

The first order optimum conditions are: 
1

0
dZ

dx
 , 

21

0
dZ

dx
  and 

22

0
dZ

dx
 . These may be expressed as: 
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3 1 21 3 1 221 1

1 1 3 3

( ) ( )( )
(1 ) 0

d A x x g d A x x gd xdZ

dx dx dx dx

     
  

     
    

3 1 212 21

21 2 3

( )( )
0

d A x x gd xdZ
h

dx dx dx

  
  
    

    
 

3 1 222 22

22 2 3

( )( )
(1 ) (1 ) 0

d A x x gd xdZ
h

dx dx dx

  
  

    
      

 



31

2 2 2 2
* * *

1 21 222

1 1 21 1 22 1

0
d Z d Z d Z d Z

dx dx dx dg
dx dx dx dx dx dx dg

   

2 2 2 2 2
* * *

1 21 222

21 1 21 21 22 21 21

0
d Z d Z d Z d Z d Z

dx dx dx dh dg
dx dx dx dx dx dx dh dx dg

    

2 2 2 2 2
* * *

1 21 222

22 1 22 21 22 22 22

0
d Z d Z d Z d Z d Z

dx dx dx dh dg
dx dx dx dx dx dx dh dx dg

    

:
Let us differentiate the first order optimum conditions with
respect to the decision variables and the risk parameters:
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The effects of increasing future price risk: 

Now, we will investigate how the optimal values of the decision variables change if h  increases. 

2

21

0
d Z

dx dh
   

2

22

(1 ) 0
d Z

dx dh
     

1

2
   

 

*

1

*

21

*

22

0

1

2

1

2

dx

D dx dh

dx

dh

 
 

   
       
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Simplification gives:

A unique maximum is assumed.
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Observation:

We assume decreasing marginal profits in all periods.
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The following results follow from optimization:
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The results may also be summarized this way:
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The expected future marginal 
resource value decreases from 
increasing price risk and we should
increase present extraction.
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The expected future marginal 
resource value increases from 
increasing price risk and we should
decrease present extraction.
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Some results of increasing risk in the price
process:
• If the future risk in the price process increases, we should increase

the present extraction level in case the third order derivatives of
profit with respect to volume are strictly negative.

• If the future risk in the price process increases, we should not change
the present extraction level in case the third order derivatives of
profit with respect to volume are zero.

• If the future risk in the price process increases, we should decrease
the present extraction level in case the third order derivatives of
profit with respect to volume are strictly positive.
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Contents:

1. Introduction via one dimensional optimization in dynamic
problems, comparative statics analysis, probabilities, increasing
risk and the importance of third order derivatives.

2. Explicit multi period analysis, stationarity and corner solutions.

3. Multi period problems and model structure with sequential
adaptive decisions and risk.

4. Optimal decisions under future price risk.

5. Optimal decisions under future risk in the volume process 
(growth risk).

6. Optimal decisions under future price risk with mixed species. 
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The effects of increasing future risk in the volume process:

Now, we will investigate how the optimal values of the decision variables change if g increases.

We recall these first order derivatives:
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With more simple notation, we get: 
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We have already differentiated the first order optimum conditions with respect to the decision variables and the risk parameters: 
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Now, we will investigate how the optimal values of the decision variables change if g increases. ( 0dh  .) 
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Let us simplify notation: 
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Now, we simplify notation even further: 
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We once again simplify notation to the following expression (where all variables appear in the same order as before and all indices are removed): 

= a(w - x)(u + bbw)(s + bbx) - (abw)(bw)(s + bbx) + (abx)(u + bbw)(bx)  

This expression can instantly be simplified to: 

2= a(suw - x(b w(s - u) + su))    

This can be rearranged to: 

2= a(su(w-x) - x(b w(s - u)))  

 2= a su(w-x) + b wx(u-s)  

Now, we slowly move back to our original notation: 
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Observations: 
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We already know that 0D  . 
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The expected future marginal 
resource value decreases from 
increasing risk in the volume
process (growth) and we should
increase present extraction.
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The expected future marginal 
resource value increases from 
increasing risk in the volume
process (growth) and we should
decrease present extraction.
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Some results of increasing risk in the volume
process (growth process):

• If the future risk in the volume process increases, we should increase
the present extraction level in case the third order derivatives of
profit with respect to volume are strictly negative.

• If the future risk in the volume process increases, we should not 
change the present extraction level in case the third order derivatives
of profit with respect to volume are zero.

• If the future risk in the volume process increases, we should decrease
the present extraction level in case the third order derivatives of
profit with respect to volume are strictly positive.
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Contents:

1. Introduction via one dimensional optimization in dynamic
problems, comparative statics analysis, probabilities, increasing
risk and the importance of third order derivatives.

2. Explicit multi period analysis, stationarity and corner solutions.

3. Multi period problems and model structure with sequential
adaptive decisions and risk.

4. Optimal decisions under future price risk.

5. Optimal decisions under future risk in the volume process 
(growth risk).

6. Optimal decisions under future price risk with mixed species. 
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The mixed species case:

• A complete dynamic analysis of optimal natural resource
management with several species should include decisions
concerning total stock levels and interspecies competition. 

• In the following analysis, we study a case with two species, where the 
growth of a species is assumed to be a function of the total stock level
and the stock level of the individual species. 

• The total stock level has however already indirectly been determined
via binding constraints on total harvesting in periods 1 and 2. 

• We start with a deterministic version of the problem and later move
to the stochastic counterpart.
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 is the total present value. itx denotes harves volume of species i in period t .  

( )it itx is the present value of harvesting species i  in period t .  

Each species has an intertemporal harvest volume constraint.  

tH denotes the total harvest volume in period t.  

These total harvest volumes are constrained in periods 1 and 2,  

because of harvest capacity constraints, constraints in logistics or other constraints,  

maybe reflecting the desire to control the total stock level. 
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11 11 21 21 12 12 22 22 13 13 23 23max ( ) ( ) ( ) ( ) ( ) ( )x x x x x x           

. .s t

11 12 13 1x x x C   

21 22 23 2x x x C   

11 21 1x x H 

12 22 2x x H 

Period 1 Period 2 Period 3



Consequences: 

21 1 11x H x   

22 2 12x H x   

13 1 11 12x C x x     

23 2 21 22x C x x     

23 2 1 11 2 12( ) ( )x C H x H x       
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Now, we move to a stochastic version of the same problem.  is the expected total present value under the influence of stochastic future events and 

optimal adaptive decisions. With probability  , the discounted price of species 1 increases by h  in period 2 and with probability  (1 ) , the price 

decreases by the same amount. We define this a ”mean preserving spread” via the constraint  1(1 )
2

    .  

itpx =Harvest volume in species i , at time t , for price state p  

 

A: Consequences for harvest decisions in periods 2 and 3 of a price increase of species 1 in period 2: 

Consequences for harvest decisions for species 1: 

If the price in period 2 of species 1 increases by h , then we harvest 
12 121x x in period 2. In period 3, we get the conditional harvest 

13 131x x .  

Consequences for harvest decisions for species 2:  

If the price in period 2 of species 1 increases by h , then we harvest 22 221x x in period 2. In period 3, we get the conditional harvest 23 231x x . 
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B: Consequences for harvest decisions in periods 2 and 3 of a price decrease of species 1 in period 2: 

Consequences for harvest decisions for species 1: 

If the price in period 2 of species 1 decreases by h , then we harvest 12 122x x in period 2. In period 3, we get the conditional harvest 
13 132x x .  

Consequences for harvest decisions for species 2:  

If the price in period 2 of species 1 decreases by h , then we harvest 22 222x x in period 2. In period 3, we get the conditional harvest 23 232x x . 
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Now, there are three free decision variables and three first
order optimum conditions: 
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Assumptions: 

'' ''

13 230 0     

In order to produce strong and relevant results, we assume that: 

''' '''

13 230 0     

and even  

''' '''

13 230 0     

In general, one should expect that  
''' '''

13 13

''' '''

12 12

1 1
 

 
  and 

''' '''

23 23

''' '''

22 22

1 1
 

 
  , since the effects of volume increases on  

the marginal profit level are usually less dramatic in the long run than in the short run. In the long run, there is more time available to adjust infrastructure 

capacity, logistics, labour force and industrial capacities to large volume changes. 

0 0     

Consequence: 
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Observations: 
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Multi species results: 

CASE 1: 
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Some multi species results:
With multiple species and total harvest volume constraints:

Case 1:

If the future price risk of one species, A, increases, we should now harvest less of this species (A) and 
more of the other species, in case the third order derivative of the profit function of species A with
respect to harvest volume is greater than the corresponding derivative of the other species.

Case 3:

If the future price risk of one species, A, increases, we should not change the present harvest of this
species (A) and not change the harvest of the other species, in case the third order derivative of the 
profit function of species A with respect to harvest volume is equal to the corresponding derivative of
the other species.

Case 5:

If the future price risk of one species, A, increases, we should now harvest more of this species (A) 
and less of the other species, in case the third order derivative of the profit function of species A with
respect to harvest volume is less than the corresponding derivative of the other species.
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Related
analyses,
via
stochastic
dynamic
programming,
are found here:
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Many more references, including this presentation, are found here:
http://www.lohmander.com/Information/Ref.htm
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