

Adaptive Mobile Firefighting Resources:

- Stochastic Dynamic Optimization of International Cooperation

Lohmander, Petera

a. Optimal Solutions in cooperation with Linnaeus University, Hoppets Grand 6, 903 34 Umea, Sweden

Problem:

Forest fires create large economical and environmental problems in many countries.

Questions:

What are the stochastic properties of fires in different countries? Is international cooperation rational?

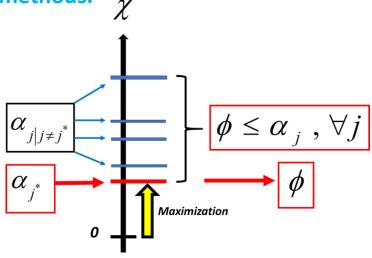
Solution:

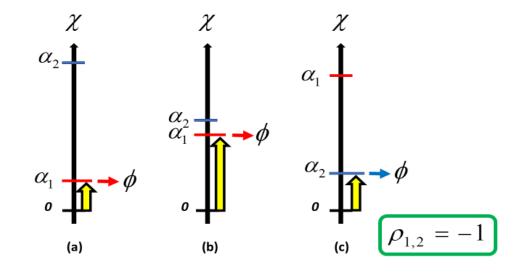
Adaptive optimization can optimize international cooperation. General methods and principles have been derived.

Slide 1: Results

Statistical properties of fires in different countries

Correlations of burned areas in different countries during nine years (from 2010 until 2018). The original data that were used to calculate these correlations are available in the official statistics by San-Miguel-Ayanz et al (2019).


	Italy	France	Portugal	Spain	Finland	Germany	Latvia	Norway	Sweden
Italy	1,000								
France	0,634	1,000							
Portugal	0,657	0,859	1,000						
Spain	0,944	0,464	0,482	1,000					
Finland	-0,492	-0,313	-0,230	-0,651	1,000				
Germany	-0,349	-0,238	-0,184	-0,369	0,666	1,000			
Latvia	-0,459	-0,291	-0,280	-0,467	0,742	0,951	1,000		
Norway	-0,427	-0,081	-0,158	-0,531	0,682	0,824	0,864	1,000	
Sweden	-0,464	-0,377	-0,356	-0,521	0,894	0,767	0,888	0,762	1,000


Optimization of adaptive international fire fighting coordination via stochastic dynamic programming

$$\phi(t, i_{t}, f_{1,t}, ..., f_{n,t}) = \min_{j_{t} \in J_{t}(i_{t})} \left\{ e^{-rt} C(t, i_{t}, j_{t}, f_{1,t}, ..., f_{n,t}) + \sum_{f_{1,t+1}=1}^{F_{1,t+1}} \cdots \sum_{f_{n,t+1}=1}^{F_{n,t+1}} \left[\tau(f_{1,t+1}, ..., f_{n,t+1} | t, i_{t}, j_{t}, f_{1,t}, ..., f_{n,t}) \cdot \phi(t+1, i_{t+1}, f_{1,t+1}, ..., f_{n,t+1}) \right] \right\}$$

$$\forall t \big|_{0 \leq t < T}, i_t, f_{1,t}, .., f_{n,t}$$

Optimal solutions via analytical and numerical methods.

Slide 2: Main Conclusions and Article

- Statistical properties of fires in different countries and regions in nine European countries were derived.
- Allocation of internationally mobile firefighting units, such as water bombing airplanes, has been defined and analyzed via stochastic dynamic programming.
- Adaptive international cooperation in firefighting operations is rational.

The published open access article:

Lohmander, P., Adaptive mobile firefighting resources, stochastic dynamic optimization of international cooperation, International Robotics & Automation Journal, Volume 6, Issue 4, 2020, pages 150-155. https://medcraveonline.com/IRATJ/IRATJ-06-00213.pdf

Contact: Peter@Lohmander.com

Related Research:

http://www.lohmander.com/Information/Ref.htm

