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Abstract

This study focuses on the optimal deployment problem, and determines the optimal size of a military force to send to the battle field. The 
decision is optimized, based on an objective function, that considers the cost of deployment, the cost of the time it takes to win the battle, and 
the costs of killed and wounded soldiers with equipment. The cost of deployment is modeled as an explicit function of the number of deployed 
troops and the value of a victory with access to a free territory, is modeled as a function of the length of the time it takes to win the battle. The 
cost of lost troops and equipment, is a function of the size of the reduction of these lives and resources. An objective function, based on these 
values and costs, is optimized, under different parameter assumptions. The battle dynamics is modeled via the Lanchester differential equation 
system based on the principles of directed fire. First, the deterministic problem is solved analytically, via derivations and comparative statics 
analysis. General mathematical results are reported, including the directions of changes of the optimal deployment decisions, under the 
influence of alternative types of parameter changes. Then, the first order optimum condition from the analytical model, in combination with 
numerically specified parameter values, is used to determine optimal values of the levels of deployment in different situations. A concrete 
numerical case, based on documented facts from the Battle of Iwo Jima, during WW II, is analyzed, and the optimal US deployment decisions 
are determined under different assumptions. The known attrition coefficients of both armies, from USA and Japan, and the initial size of the 
Japanese force, are parameters. The analysis is also based on some parameters without empirical documentation, that are necessary to 
include to make optimization possible. These parameter values are motivated in the text. The optimal solutions are found via Newton- 
Raphson iteration. Finally, a stochastic version of the optimal deployment problem is defined. The attrition parameters are considered as 
stochastic, before the deployment decisions have been made. The attrition parameters of the two armies have the same expected values as in 
the deterministic analysis, are independent of each other, have correlation zero, and have relative standard deviations of 20%. All possible 
deployment decisions, with 5000 units intervals, from 0 to 150000 troops, are investigated, and the optimal decisions are selected. The 
analytical, and the two numerical, methods, all show that the optimal deployment level is a decreasing function of the marginal deployment 
cost, an increasing function of the marginal cost of the time to win the battle, an increasing function of the marginal cost of killed and 
wounded soldiers and lost equipment, an increasing function of the initial size of the opposing army, an increasing function of the efficiency of 
the soldiers in the opposing army and a decreasing function of the efficiency of the soldiers in the deployed army. With stochastic attrition 
parameters, the stochastic model also shows that the probability to win the battle is an increasing function of the size of the deployed army. 
When the optimal deployment level is selected, the probability of a victory is usually less than 100%, since it would be too expensive to 
guarantee a victory with 100% probability. 2



This study focuses on the optimal deployment problem, and determines 
the optimal size of a military force to send to the battle field. 

The decision is optimized, based on an objective function, that considers  
the cost of deployment, 

the cost of the time it takes to win the battle, and 

the costs of killed and wounded soldiers with equipment. 

The cost of deployment is modeled as an explicit function of the number 
of deployed troops and the value of a victory with access to a free 
territory, is modeled as a function of the length of the time it takes to 
win the battle. The cost of lost troops and equipment, is a function of the 
size of the reduction of these lives and resources.
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An objective function, based on these values and costs, is optimized, 
under different parameter assumptions. 

The battle dynamics is modeled via the Lanchester differential 
equation system based on the principles of directed fire. 

First, the deterministic problem is solved analytically, via derivations 
and comparative statics analysis. General mathematical results are 
reported, including the directions of changes of the optimal 
deployment decisions, under the influence of alternative types of 
parameter changes. 

Then, the first order optimum condition from the analytical model, in 
combination with numerically specified parameter values, is used to 
determine optimal values of the levels of deployment in different 
situations.
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A concrete numerical case, based on documented facts from the 
Battle of Iwo Jima, during WW II, is analyzed, and the optimal US 
deployment decisions are determined under different assumptions.

The known attrition coefficients of both armies, from USA and Japan, 
and the initial size of the Japanese force, are parameters. The analysis 
is also based on some parameters without empirical documentation, 
that are necessary to include to make optimization possible. These 
parameter values are motivated in the text. 

The optimal solutions are found via Newton- Raphson iteration.
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Finally, a stochastic version of the optimal deployment problem is 
defined. The attrition parameters are considered as stochastic, before 
the deployment decisions have been made. 

The attrition parameters of the two armies have the same expected 
values as in the deterministic analysis, are independent of each other, 
have correlation zero, and have relative standard deviations of 20%. 

All possible deployment decisions, with 5000 units intervals, from 0 
to 150000 troops, are investigated, and the optimal decisions are 
selected.
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The Lanchester differential equations:
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Figure 1.  

The time path of (x, y) in 

the special case, when 

bx2=ay2. 
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Figure 2.

The time path of (x,y) in 

the special case, when 

bx2=ay2, is a function of 

the ratio b/a. The graph 

shows how the time path 

changes if the ratio b/a 

increases or decreases.
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Figure 3.
Deviations from the line 

b
y x

a
=

imply that (x, y) will not 
converge to origo. 
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Figure 4.

T is the point in time when 

x or y equals zero. If (x, y) 

at some point in time, t, 

such that t<T, is found in 

the blue sector, then 

x(T)>0 and y(T)=0. If (x, y) 

at some point in time, t, 

such that t<T, is found in 

the red sector, then x(T)=0 

and y(T)>0. 
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Figure 15.

KIAx denotes the total number of 

lost x resources, at different points 

in time, t, until t = T. 

T is the point in time, when y(T) = 0. 

KIAx(x0/1000) = x0 – x(t). 

a = 0.05347 and b = 0.01045. y0 = 

18000. 

In the four different cases, x0 takes 

the value 45000, 65000, 85000, or 

105000. 

The graph is constructed via a 

discrete time approximation of the 

differential equation system (1). 
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Figure 16.

KIAy is the total number of lost y 

resources, at different points in 

time, t, until t = T.  

T is the point in time when y(T) = 0. 

KIAy(x0/1000) = y0 – y(t). 

a = 0.05347 and b = 0.01045. In all 

cases, y0 = 18000. 

In the four different cases, x0 takes 

the value 45000, 65000, 85000, or 

105000. 

The graph is constructed via a 

discrete time approximation of the 

differential equation system (1). 
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T, the time of termination, is the 

point in time, when y(T) = 0. 

a = 0.05347 and b = 0.01045. 

y0 = 18000. 

In the four different cases, x0 

takes the value 45000, 65000, 

85000, or 105000. 

The graph is constructed via a 

discrete time approximation of 

the differential equation system 

(1). 
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KIAx at termination is the total number 

of lost x resources, at time t = T. 

T is the point in time, when y(T) = 0. 

a = 0.05347 and b = 0.01045. 

y0 = 18000. 

In the four different cases, x0 takes the 

value 45000, 65000, 85000, or 105000. 

The graph is constructed via a discrete 

time approximation of the differential 

equation system (1). 
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Formal analysis: 

Briefing on this section: 

The complete dynamics of the battle in continuous time is determined. First, the general solution to 

the Lanchester differential equation system, which is a homogenous second order differential 

equation system, is derived. This may be interpreted as a 2-dimensional Two Point Boundary Value 

Problem (TPBVP). Equation (12) corresponds to equation (1), but also includes initial conditions. 

We study the differential equation system (12). The state of the system, ( ( ), ( ))x t y t , representing 

the sizes of the two opposing forces, changes over time, , 0t t T    . The two parameters, ( , )a b

, are called attrition coefficients. Newtonian notation, with time derivatives marked by dots, is used. 

0 0

(12. )
0, 0, (0) 0, (0) 0

(12. )

x ay a
a b x x y y

y bx b


= −

  =  = 
 = −

 

 
(12) 
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From (12.a), we get (13). 

1y a x−= −  
(13) 

 

Differentiation of (13) with respect to time, gives (14). 

1y a x−= −  
(14) 

 

(14) and (12.b) give (15). That can be rewritten as (16) and (17), which is a homogenous second order 

differential equation. 

1a x bx−− = −  
(15) 

 

1 0a x bx− − =  
(16) 

 

0x abx− =  
(17) 
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Let us assume that the functional form (18) is relevant. The parameters ( , )m   are assumed to be 

strictly different from zero. 

( ) , 0, 0,0tx t me m t T =       (18) 

 

Then, the following procedure can be used to determine the state variable as an explicit function of 

time. Equations (17) and (18) give (19). 
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2 0t tme abme  − =  (19) 

 

Equation (19) can be simplified to (20). 

( )2 0tab me − =  (20) 

  
Equations (18) and (20) imply (21). 

2 0ab − =  (21) 

  
From the quadratic equation (21), we obtain the solution (22).  

ab =   (22) 
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ab =   (22) 

 
 

 

Let r be defined according to (23).  
 

r ab=  (23) 

Clearly, two solutions exist. 

1 r = −  (24) 

 

2 r =  (25) 
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Observation:  

0 0a b   , as we see in equation (12), which means that there are two real roots. These roots 

have different values. Hence, the general solution of the differential equation is: 

1 2( ) rt rtx t m e m e−= +  (26) 

Furthermore, from (13) we already know that: 1y a x−= −  

As a result, we get (27). 

( )1

1 2( ) rt rty t a rm e rm e− −= − − +  (27) 

 

The expression (27) may be rewritten as (28). 

1 2( ) rt rtr r
y t m e m e

a a

−= −  
 

(28) 
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1 2

1 2

( )

( )

rt rt

rt rt

x t m e m e

r r
y t m e m e

a a

−

−

 = +



= −


 

 
(29) 

 

To determine the time path ( )( ), ( )x t y t  we need to know the four parameters ( )1 2, , ,m m a r . We 

already know the initial value of 0, (0)y y y= . In this study, we are interested to determine the 

optimal value of 0x . We want to be sure that we will win the battle, which means that ( ) 0x T  and 

( ) 0y T =  at a point in time, T . This point in time, when the enemy has no more available resource, 

is denoted the terminal time. 
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From equation (29), the initial conditions (30) and (31) follow:  

1 2 0(0)x m m x= + =  (30) 

 

1 2 0(0)
r r

y m m y
a a

= − =  
 

(31) 

 

The terminal conditions, (32) and (33), are also derived from equation (29): 

1 2( ) rT rT

Tx T m e m e x−= + =  (32) 

 

1 2( ) rT rT

T

r r
y T m e m e y

a a

−= − =  
 

(33) 
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The nonlinear simultaneous equation system (34) must be satisfied. We assume that a feasible 

solution exists and that this solution is unique. 

1 2 0

1 2

1 2 0

1 2

(34. )

(34. )

(34. )

(34. )

rT rT

T

rT rT

T

m m x a

m e m e x b

r r
m m y c

a a

r r
m e m e y d

a a

−

−

+ =


+ =


 − =



− =


 

 
 
 

(34) 
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Determination of ( )1 2,m m : 

01

02

1 1 xm

yms s

   
=    

−     
 

 
(35) 

 

r ab b
s

a a a
= = =  

 
(36) 

 

1 1
2D s

s s
= = −

−
 

 
(37) 
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From Cramer’s rule, we get: 

0

0 0 0
1

1

2

x

y s sx y
m

D s

− − −
= =

−
 

 
 

(38) 

 

1 0 0
0 0

1
2 2

a
x y

x s y b
m

− +
+

= =  

 
(39) 

 

10 0
1 0 ,

2

x vy a
m v s

b

−+
=  = =  

 
(40) 
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0

0 0 0
2

1

2

x

s y y sx
m

D s

−
= =

−
 

 
 

(41) 

 

0 0
0 0

2
2 2

a
x y

x vy b
m

−
−

= =  

 
 

(42) 

 

2
2 20 0

2 0 02

0 0

0

0

0

x xa a
m bx ay

y b y b

          
       
=  =  =  =       
                 

 

 
 

(43) 
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Observations: 

Two different proofs are given in the end of this paper that show that 
2 2

0 0( )
bx ay

x T
b

−
= . 

If 2 2

0 0bx ay , then ( )y t reaches zero when ( ) 0x t  . In that case, 
2 0m  . 

If 2 2

0 0bx ay , then ( )x t reaches zero when ( ) 0y t  . In that case, 2 0m  . 

If 2 2

0 0bx ay= (which is extremely unlikely), then ( )x t and ( )y t both converge to zero. Then, 2 0m = . 

The case when 2 2

0 0bx ay= is not further studied in this paper, since the probability of that case is 

practically zero. 
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Determination of T. 

From now on, we only consider the case where 2 2

0 0bx ay . Consequently, ( )y t reaches zero when 

( ) 0x t   and
2 0m  . Let us determine T as the point in time when ( ) 0Ty T y= = . 

1 2 0rT rT

Ty sm e sm e−= − =  (44) 

 

( )1 2 0

0 0

rT rTs m e m e− − =

 =
 

 
(45) 

 

( )1 2 0rT rTm e m e− − =  (46) 
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( )2

1 2 0

0 0

rT rTe m m e− − =

 =
 

 
(47) 

 

2

2 1

rTm e m=  (48) 

 

2 1

2

rT m
e

m
=  

(49) 

 

1

2

2
m

rT LN
m

 
=  

 
 

 
(50) 

0 0

0 0

0 0
0 0

2 2

a
x y

bLN
x vy aLN x y
x vy b

T
r ab

 
+ 

 
 +  

−   −   = =  

 
 
 

(51) 
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Figure 15.

T(x0, y0). 

a = 0.05347, b = 0.01045.

 Compare equation (51).
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Figure 16.

T(x0, y0). 

 a = 0.05347 

 b = 0.01045

a = 0.05347

  b = 0.02045
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Determination of the derivative of T with respect to x0. 

 

( )
( ) ( )

( )

1 0 0 0 00 0

2

0 0 0 0 0

1 1
2

x vy x vyx vydT
r

dx x vy x vy

−
  − − +  −

=    + −  

 
 

(52) 

 

( )
( )( )

1 0

0 0 0 0 0

2
2

vydT
r

dx x vy x vy

− −
=

+ −
 

 
(53) 
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( )( )
0

0 0 0 0 0

vydT

dx r x vy x vy

−
=

+ −
 

 
(54) 

 

( )
0

2 2 2
0 0 0

vydT

dx r x v y

−
=

−
 

 
(55) 

 

0

2 20
0 0

a
y

dT b

adx
ab x y

b

−

=
 

− 
 

 

 
 

(56) 

 

0

2 20
0 0

ydT

adx
b x y

b

−
=

 
− 

 

 
 
 

(57) 

 

0

2 2

0 0 0

0
ydT

dx bx ay

−
= 

−
 

 
(58) 
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Determination of the second derivative of T with respect to x0. 

 

( )

( )

2
0 0

22 2 2
0 0 0

2y bxd T

dx bx ay

− −
=

−
 

 
(59) 

 

( )

2

0 0

22 2 2
0 0 0

2
0

bx yd T

dx bx ay
= 

−
 

 
(60) 
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Determination of xT via the function x(t) and the value of T when yT = 0: 

 

1 2( ) rT rT

Tx T m e m e x−= + =  (61) 

 

0 0 0 0( )
2 2

rT rTx vy x vy
x T e e−+ −   

= +   
   

 
 

(62) 

 



50

0 0 0 0

0 0 0 0

2 2

0 0 0 0( )
2 2

x vy x vy
LN LN

x vy x vy
r r

r r

x vy x vy
x T e e

      + +
      

− −      
−    

   
   
   

+ −   
= +   
   

 

 
 

(63) 

 

0 0 0 0

0 0 0 0

2 2

0 0 0 0( )
2 2

x vy x vy
LN LN

x vy x vy

x vy x vy
x T e e

      + +
      

− −      
−   
   
   
   

+ −   
= +   
   

 

 
 

(64) 

 

0 0 0 0 0 0 0 0

0 0 0 0

( )
2 2

x vy x vy x vy x vy
x T

x vy x vy

+ − − +   
= +   

+ −   
 

 
(65) 

 

0 0 0 0 0 0 0 0
( )

2 2

x vy x vy x vy x vy
x T

+ − − +
= +  

 
(66) 

 

0 0 0 0( )x T x vy x vy= + −  (67) 

 

( ) ( )( )
2

0 0 0 0( )x T x vy x vy= + −  
(68) 
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( )
2 2 2 2

0 0( )x T x v y= −  
(69) 

 

2 2 2

0 0( )x T x v y= −  
(70) 

 

2 2

0 0( )
a

x T x y
b

 
= −  

 
 

 
(71) 

 

2 2

0 0( )
bx ay

x T
b

−
=  

 
(72) 

 



52

Alternative method to determine xT: 

 

dx
ay

dt

dy
bx

dt


= −


 = −


 

 
 

(73) 

 

dx ay

dy bx

−
=
−

 
 

(74) 

 

bx dx ay dy=  (75) 

 

0 0

T Tx y

x y

bx dx ay dy=   
 

(76) 
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0 0

2 2

2 2

T Tx y

x y

x y
b a
   

=   
   

 
 

(77) 

 

2 22 2

0 0

2 2 2 2

T T
x yx y

b a
   

− = −   
   

 
 

(78) 

 

( ) ( )2 2 2 2

0 0T Tb x x a y y− = −  (79) 

 

 

( ) ( )2 2 2

0 0 , 0T Tb x x a y y− = − =  (80) 
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2 2 2

0 0 , 0T Tbx bx ay y= − =  (81) 

 

2 2
2 0 0 , 0T T

bx ay
x y

b

−
= =  

 
(82) 

 

2 2

0 0 , 0T T

bx ay
x y

b

−
= =  

 
(83) 

 

Q.E.D. 
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Figure 17.

xT(x0,y0). 

a = 0.05347, b = 0.01045.

Compare equation (83).
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Figure 18.

K(x0, y0) = x0 - xT(x0,y0). 

a = 0.05347, b = 0.01045. 

Compare equation (83).
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Figure 19.

K(x0, y0) = x0 - xT(x0,y0).

 

a = 0.05347 

b = 0.01045 

Compare equation (83).

a = 0.05347 

b = 0.02045 
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Determination of the derivative of xT with respect to x0 when yT = 0: 

 

2 2

0 0 , 0T T

bx ay
x y

b

−
= =  

 
(84) 
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( )
1 1

2 22 2
0 0 , 0T Tx b bx ay y

−

= − =  
 

(85) 

 

( ) ( )
1 1

2 22 2
0 0 0

0

1
2

2

Tdx
b bx ay bx

dx

− − 
= − 

 
 

 
(86) 

 

( )
1 1

2 22 2
0 0 0

0

0Tdx
b bx ay x

dx

−

= −   
 

(87) 

 

0

2 2
0 0 0

0T
b xdx

dx bx ay
= 

−
 

 
(88) 
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Determination of the second derivative of xT with respect to x0 when yT = 0: 

 

( ) ( )
1 3 12

2 2 2 2 22 2 2
0 0 0 0 02

0

1
2

2

Td x
b bx ay bx bx ay

dx

− − 
= − − + − 

 
 

 
(89) 

 

( ) ( )
1 3 12

2 2 2 2 22 2 2
0 0 0 0 02

0

Td x
b bx ay bx bx ay

dx

− − 
= − − + − 

 
 

 
(90) 

 

( ) ( )( )
1 12

1
2 2 2 2 22 2

0 0 0 0 02

0

1Td x
b bx ay bx ay bx

dx

− −

= − − − +  
 

(91) 
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( )
1 212

2 2 02 2
0 02 2 2

0 0 0

1T
bxd x

b bx ay
dx bx ay

−  −
= − + 

− 
 

 
(92) 

 

( ) ( )
1 12

2 2 2 2 22 2
0 0 0 0 02 2 2

0 0 0

1Td x
b bx ay bx bx ay

dx bx ay

−  
= − − + − 

− 
 

 
(93) 

 

( ) ( )
1 32

2 2 22 2
0 0 02

0

Td x
b bx ay ay

dx

−

= − −  
 

(94) 

 

( )

22

0

32
2 20 2

0 0

0T
a byd x

dx
bx ay

−
= 

−

 
 

(95) 
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Summary of important results 

 

0 0

0 0

2

a
x y

bLN
a

x y
b

T
ab

 
+ 

 
 

− 
 =  

 
 
 

(96) 

 

0

2 2

0 0 0

0
ydT

dx bx ay

−
= 

−
 

 
(97) 

 

( )

2

0 0

22 2 2
0 0 0

2
0

bx yd T

dx bx ay
= 

−
 

 
(98) 
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2 2

0 0 , 0T T

bx ay
x y

b

−
= =  

 
(99) 

 

0

2 2
0 0 0

0T
b xdx

dx bx ay
= 

−
 

 
(100) 

 

( )

22

0

32
2 20 2

0 0

0T
a b yd x

dx
bx ay

−
= 

−

 
 

(101) 
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( )
0

0 0max ; , , , , ,
TT x

x
x a b c c G y

Economic optimization in the deterministic case:

Cost
per
time
unit
of
delay

Cost
per 
unit
of
lost
resources

Revenue 
from
instant
access
to free
territory
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( ) ( ) ( )( )
0

0 0 0 0 0 0max , , , , , ,
TT x T

x
C x G c T x y a b c x x x y a b = − + − − −

( )
0

0 0

2 20 0

0 0
0 0max

2 TT x
x

a
x y

bLN
a

x y
bx ayb

C x G c c x
r b



 
+ 

 
 

−   − = − + − − − 
 
 

Total cost of
deployment

Revenue 
from
territory Cost of delay Cost of lost units



66

The Figures 20 and 21 illustrate the objective function (104) 
as a function of the initial sizes of the two forces. 

The functions and values in Figure 20 are:
   
C(x0) = 1000 + 1x0 
G = 200000 
cT = 730 
cxT =2
 
a = 0.05347 
b = 0.01045 
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Figure 20.

The objective function in 
equation (104), as a 
function of the initial 
sizes of the two forces. 

x0

y0
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The graph illustrates that the optimal value of x0 is an 

increasing function of y0. 

Furthermore, the optimal value of the objective 

function of the commander of force x, is a decreasing 

function of the initial size of the force y. 

Clearly, if the value y0 would have a much larger value 

than 20000, as illustrated in the graph, the maximum 

of the objective function value, would be strictly 

negative.

Then, the optimal decision of the commander of the x 

forces would be not to participate in the battle at all.

y0

x0
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Figure 21.

The objective function in 

equation (104), as a function 

of the initial sizes of the two 

forces, with alternative 

values of the attrition 

coefficient “b”. 

Yellow: 

a = 0.05347, b = 0.01045

Turquoise: 

a = 0.05347, b = 0.02045 
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The graph illustrates that the 

objective function value of 

the commander of the x 

forces is an increasing 

function of the attrition 

coefficient b, 

and that the optimal number 

of units x to send to the 

battle field is a decreasing 

function of b, 

for all possible sizes of the 

enemy force, if the optimal 

decision x0 is strictly 

positive.

b large

b small



71

A unique maximum: 

First order optimum condition: 

0 0 0 0

0
T

T
T x

dxd dC dT
c c

dx dx dx dx


= − − + =  

 
(105) 

 

( ) ( )0 0 0 0

0 0 0 0

, , , , , ,
0

T

T

T x

dT x y a b dx x y a bd dC
c c

dx dx dx dx


= − − + =  

 
(106) 

 



72

0 0 0 0

0
T

T
T x

dxd dC dT
c c

dx dx dx dx


= − − + =  

 
(107) 

 

22 2 2

2 2 2 2

0 0 0 0
T

T
T x

d xd d C d T
c c

dx dx dx dx


= − − +  

 
(108) 

 

22 2 2

2 2 2 2

0 0 0 0

0 0 0 0 0 0
T

T
T x

d xd C d T d
c c

dx dx dx dx

 
           

 
 

 
(109) 

 

Hence, the solution of the first order optimum condition 

represents a unique maximum of the objective function.
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Comparative statics analysis: 

Now, we determine how parameter changes affect the optimal deployment decision: 

With comparative statics analysis, we see how the optimum is maintained when different possible 

parameter changes take place. First, the cost per day of the battle is adjusted. The first order 

optimum condition is differentiated with respect to the optimal value of 
0x , denoted *

0x , and 
Tc : 

 

2
*

02

0 0 0

0T

d d dT
d dx dc

dx dx dx

  
= − = 

 
 

 
(110) 

 

2
*

02

0 0

T

d dT
dx dc

dx dx


=  

 
(111) 

 

( )

( )

*
00

2

2

0

0
0

0T

dT

dxdx

dc d

dx



 
 

 = = 
 

 
 

 

 
 
 

(112) 

 

Hence, if the cost per day 

before the victory 

increases, then the 

optimal deployment level 

increases. This is 

understandable, since the 

process will end more 

rapidly if the initial 

number of units is larger.

The cost per day 
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2
*

02

0 0 0

0
T

T
x

dxd d
d dx dc

dx dx dx

  
= + = 

 
 

 
(113) 

2
*

02

0 0
T

T
x

dxd
dx dc

dx dx


= −  

 
(114) 

  

( )

( )

*
00

2

2

0

0
0

0
T

T

x

dx

dxdx

dc d

dx



 
− 

 = = 
 

 
 

 

 
 
 

(115) 

 
The result shows that if the cost per unit of killed or wounded troops 

with equipment increases, then the optimal deployment level 

increases. 

This is understandable, since the number of surviving units is an 

increasing function of the initial number of units.

The cost per unit 
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Attrition coefficient a 

( ) ( )0 0 0 0

0 0 0 0

, , , , , ,
0

T

T

T x

dT x y a b dx x y a bd dC
c c

dx dx dx dx


= − − + =  

 
(116) 

 

0

2 2

0 0 0

0
ydT

dx bx ay

−
= 

−
 

 
(117) 

 

0

2 2
0 0 0

0T
b xdx

dx bx ay
= 

−
 

 
(118) 

 

0 0

2 2 2 2
0 0 0 0 0 0

0
TT x

y b xd dC
c c

dx dx bx ay bx ay

   −
 = − − + = 
 − −   

 
 

(119) 
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1
1 2 22 2

0 00 0

0 0 0 0

0
TT x

bx aybx ayd dC
c c

dx dx y b x


−

−  − −
 = − − + = 
 −   

 

 
(120) 

 

( ) ( ) ( ) ( ) ( )
2

2 2 22 2 12
0 02 2 2 20 0 2

0 0 0 0

0 0 0

1
1 1

2TT x

bx aybx ayd
c y c bx ay y

dx da y b x


−

−

− − −  
 = − − − + − − −    −     

 
 

(121) 

 

( )
2

2 2 22 2 12
0 02 2 20 0 2

0 0 0

0 0 0

1
0

2TT x

bx aybx ayd
y c c bx ay

dx da y b x


−

−
−

  − −    = + −             

 

 
 

(122) 

 

 

2 2
*

02

0 0 0

0
d d d

d dx da
dx dx dx da

   
= + = 

 
 

 
(123) 
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2 2
*

02

0 0

d d
dx da

dx dx da

 
= −  

 
(124) 

 

( )

( )

2

*
00

2

2

0

0
0

0

d

dx dadx

da d

dx





 
− 

 = = 
 

 
 

 

 
 

(125) 

 

Hence, if the attrition coefficient a increases, 

then the optimal deployment increases.
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Attrition coefficient b 
1

1 2 22 2
0 00 0

0 0 0 0

0
TT x

bx aybx ayd dC
c c

dx dx y b x


−

−  − −
 = − − + = 
 −   

 

 
(126) 

 

( ) ( ) ( ) ( )

2
1

2 2 2
0 0 3

2
2 2 2 22 2

2 20 0 0 0
0 0

0 0 0

1
1 1

2TT x

bx ay

bbx ay bx ayd
c x c x

dx db y x b



−

−

 
 − 
     − −  = − − + −      

−      
 
 
 

 

 
 
 

(127) 

 

( ) ( )

2
1

2 2 2
0 0 3

2
2 2 2 22 2

2 20 0 0 0
0 0

0 0 0

1
0

2TT x

bx ay

bbx ay bx ayd
c x c x

dx db y x b



−

−

 
 − 
     − −  = − −      

     
 
 
 

 

 
 
 

(128) 
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( )
( )

( )

3
2 2 2 22 2

2 0 0 0 0
0 2 2 22 2

0 0 00 0

1

2TT x

y x bx ayd
x c c

dx db bbx aybx ay

b



 
 

 −  = − −     −   −
   

  

 

 
 

(129) 

 

 

( )

22 2 22
02 0 0 0

0 2
2 2

0 0 0

0
2

TxT
c xc y bx ayd

x
dx db bbx ay


 

− = − + 
 −
 

 

 
(130) 
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2 2
*

02

0 0 0

0
d d d

d dx db
dx dx dx db

   
= + = 

 
 

 
(131) 

 

2 2
*

02

0 0

d d
dx db

dx dx db

 
= −  

 
(132) 

 

( )

( )

2

*
00

2

2

0

0
0

0

d

dx dbdx

db d

dx





 
− 

 = = 
 

 
 

 

 
 

(133) 

 

Hence, if the attrition coefficient b increases, then the optimal 

deployment decreases. 

This is also illustrated in Figure 21.
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Numerical optimization
with known attrition parameters
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Numerical Model 1:

Continuous optimization model with Newton Raphson iteration. CASE 0.
























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Figure 22.

The optimal values of x0, according to Numerical model 1, in alternative cases.
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The optimal values of T, the day of the victory, according to Numerical model 1, in alternative cases.
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Numerical optimization
with stochastic attrition 

parameters

z = the stochastic deviation from the expected value (of an attrition parameter).

When the operation is planned, the true value of z is not known, but the 

probability distribution ”and/or” the probability density function, ”are/is” known.
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Assumptions in stochastic analysis (with discrete z).

z freq Probability
-5 1 0.027778

-4 2 0.055556
-3 3 0.083333

-2 4 0.111111
-1 5 0.138889
0 6 0.166667

1 5 0.138889
2 4 0.111111

3 3 0.083333
4 2 0.055556

5 1 0.027778

First, we consider this discrete approximation of a triangular probability distribution: 
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First, we recall the deterministic version of the problem:

is affected by a and b.

is affected by a and b.Tx
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x

a b

E R x C x R x a b P a P b= − +

( ) ( ) ( )( )
0

0 0 0 0 0 0max , , , , , ,
TT x T

x
C x G c T x y a b c x x x y a b = − + − − −

The parameters a and b are not known before has been decided.
0x

Now, however, we want to maximize the expected total result.

The deterministic version was:

( )
0

0 0 0max ( ( )) ( ) ; , ( , )x
x

a b

E R x C x R x a b P a b= − +

Stochastic problem with discrete a and b:

General

Corr = 0
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x
C x G c T x y a b c x x x y a b = − + − − −

The parameters a and b are not known before has been decided.
0x

Now, however, we want to maximize the expected total result.

The deterministic version was:

( )
0

0 0 0max ( ( )) ( ) ; , ( , )x
x

E R x C x R x a b f a b db da= − +  

Stochastic problem with continuous a and b:

General

Corr = 0( )
0

0 0 0max ( ( )) ( ) ; , ( ) ( )x b a
x

E R x C x R x a b f b f a db da= − +  
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Numerical Model 2:

Discrete optimization model with stochastic attrition 

coefficients:

This model, partly based on the analytical derivations 

presented in the earlier sections, determines the optimal 

decisions and consequences, via numerical calculations, for 

alternative deployment levels. 

The optimal value of the objective functions is defined as the 

highest value of the investigated alternatives. 
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G

-1 x (Marginal Deployment Cost)

Attrition parameter a: 
Expected value 0.0544 and
relative standard deviation 0.2

Attrition parameter b: 
Expected value 0.0106 and
relative standard deviation 0.2

Correlation between a and b is zero.

Optimum
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Figure 25. 

The optimal values of x0, according to Numerical model 2, in alternative cases. 
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Figure 26. 

The optimal expected values of E(T), the day of the victory, according to Numerical model 2, in 

alternative cases. 
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Figure 27. 

The optimal expected values of K, (= KIAx), the number of killed and wounded soldiers, according to 

Numerical model 2, in alternative cases. 



Short summary of the results:
The analytical, and the two numerical, methods, all show that the optimal deployment level is 

a decreasing function of the marginal deployment cost, 

an increasing function of the marginal cost of the time to win the battle, 

an increasing function of the marginal cost of killed and wounded soldiers and lost equipment, 

an increasing function of the initial size of the opposing army, 

an increasing function of the efficiency of the soldiers in the opposing army and 

a decreasing function of the efficiency of the soldiers in the deployed army. 

With stochastic attrition parameters, the stochastic model also shows that the 

probability to win the battle is an increasing function of the size of the deployed army. 

When the optimal deployment level is selected, the probability of a victory is usually less than 
100%, since it would be too expensive to guarantee a victory with 100% probability. 
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