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Peter Lohmander

Abstract

Theoretical understanding of the relevant problem structure and consistent 
mathematical modeling are necessary keys to formulating operations 
research models to be used for optimization of decisions in real applications. 
The numbers of alternative models, methods and applications of operations 
research are very large. 
This paper presents fundamental and general decision and information 
structures, theories and examples that can be expanded and modified in 
several directions. 
The discussed methods and examples are motivated from the points of 
view of empirical relevance and computability.

Keywords: Operations Research, Mathematical Modeling, Optimization.
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Introductory examples of important
real world decision problems

that can be developed to 
applications of operations research
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Optimal oil extraction
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Optimal 
domestic
oil logistics
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Optimal 
oil
refining
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Optimal international trade and 
oil logistics
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Optimal oil industry management



Introduction to mathematical modeling
and operations research
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Operations research is a very large area. 

In this paper, we will focus on operations research 

in connection to optimization of decisions, with one 

or more decision maker(s). 

The classical analytical methods of optimization 

and comparative statics analysis, basic economic 

theory and fundamental linear programming are 

well presented in Chiang [3].

[3] Chiang, A.C., Fundamental Methods of Mathematical 
Economics, McGraw-Hill, Inc., 2 ed., 1974 
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Mathematical modeling is central to operations research. 

Usually, in applied problems, there are many different ways 
to define the mathematical models representing the 
components of the system under analysis. 

The reference book of the software package LINGO [1] 
contains large numbers of alternative operations research 
models and applications with numerical solutions.

[1] Anon, LINGO, the Modeling Language and Optimizer, 
Lindo Systems Inc., Chicago, 2013
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A particular applied problem should, if possible, be analyzed 

with a problem relevant operations research method, using a 

problem relevant set of mathematical models.

This may seem obvious to the reader, but 

it is far from trivial to determine the problem relevant method 

and models.

The two books by Winston, references [16] and [17], give a good and rather complete presentation of 

most operations research methods, algorithms and typical applications. 

[16] Winston, W.L., Operations Research, Applications and Algorithms, 
Thomson, Brooks/Cole, Belmont, USA, 2004 

[17] Winston, W.L., Introduction to Probability Models, Operations 
Research: Volume two, Thomson, Brooks/Cole, Belmont, USA, 2004 
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The operations research literature contains large numbers 

of alternative methods and models, applied to very similar 

types of applied problems. 

In many cases, the optimal decisions that are the results 

of the analyses, differ considerably.

For instance, if we want to determine the optimal decision in a 
particular problem, we may define it as a one dimensional 
optimization problem, or as a multidimensional problem where 
we simultaneously optimize several decisions that may be linked 
in different ways. 
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We may also consider constraints of different sorts. 

In most problems, present decisions have consequences 
for the future development of the system under analysis.

Hence, multi period analysis is often relevant.
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Many types of resources are 

continuously used, thanks to biological 

growth. 

Braun [2] gives a very good presentation 

of ordinary differential equations, which 

is key to the understanding and 

modeling of dynamical systems, 

including biological resources of all 

kinds.

[2] Braun, M., Differential Equations and 
Their Applications, Springer-Verlag, Applied 
Mathematical Sciences 15, 3 ed., 1983
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In agriculture, fishing, forestry, wildlife 

management and hunting, resources are 

used for many different purposes, including 

food, building materials, paper, energy and 

much more. In order to determine optimal 

present decisions in such industries, it is 

necessary to develop and use dynamic 

models that describe how the biological 

resources grow and how the growth is 

affected by present harvesting and other 

management decisions. 

Clark [4] contains several examples and 

solutions of deterministic optimal control 

theory problems in natural resource sectors.
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Weintraub et al [15] contains many 

dynamic operations research 

problems and solutions from 

different natural resource 
sectors. 

[15] Weintraub, A. et al., Handbook of 

Operations Research in Natural 

Resources, Springer, New York, 2007
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Then, we realize that the future 

state of the world can change 

for several reasons. 

In resource management 

problems, for instance, we often 

want to determine optimal 

present extraction of some 

resource, such as coal or oil. 

If we take more today, we have 

to take less in the future. 
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The present and future prices are very important parameters in 

such decision problems and we usually have to agree that the 

future prices are not perfectly known today. 

Price changes may occur because of technical innovations, 

political changes and many other reasons.

We simply have to accept that 

future prices can never be perfectly predicted. 

Hence, the 
stochastic properties of prices have to be analyzed and used in the 
operations research studies in order to determine optimal present 
decisions.
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The degree of unexplained variation in the future state 

of the resource is often considerable. Many crops are 

sensitive to extreme rains, heat, floods, parasites 

and pests. Forests are sensitive to storms and 

hurricanes, fires etc.. 

Obviously, risk is of central importance to modeling 

and applied problem solving in these sectors. 

Grimmet and Stirzaker [6] contains most of the 

important theory of probability and random processes. 

[6] Grimmet, G.R., Stirzaker, D.R., Probability and Random 
Processes, Oxford University Press, New York, Reprint with 
corrections, 1985
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Fleming and Rishel [5] contains the general theory of 

deterministic and stochastic optimal control. 

Sethi and Thompson [12] cover a field very similar to 

[5], but is more focused on applied derivations.

[5] Fleming, W.H., Rishel, R.W., Deterministic and Stochastic 
Optimal Control, Springer-Verlag, Applications of 
Mathematics, New York, 1975

[12] Sethi, S.P., Thompson, G.L., Optimal Control Theory, 
Applications to Management Science and Economics, 2 ed., 
Kluwer Academic Publishers, 2000
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Lohmander [8] and [9] shows how dynamic and 

stochastic management decisions can be optimized 

with different methods, including different versions 

of stochastic dynamic programming. 

[8] Lohmander, P., Optimal sequential forestry 

decisions under risk, Annals of Operations Research, 

Vol. 95, pp. 217-228, 2000

[9] Lohmander, P., Adaptive Optimization of Forest 

Management in a Stochastic World, in Weintraub A. et 

al (Editors), Handbook of Operations Research in Natural 

Resources, Springer, Springer Science, International 

Series in Operations Research and Management 

Science, New York, USA, pp 525-544, 2007
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Stochastic dynamic programming

A very flexible method for optimization of decisions over time
under the influence of exogenous stochastic processes
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Lohmander [10] develops methodology for optimization of large 

scale energy production under risk, using stochastic dynamic 

programming with a quadratic programming subroutine.

[10] Lohmander, P., Optimal adaptive stochastic control of large 

scale energy production under the influence of market risk, 

KEYNOTE at the: 9th International Conference of the Iranian Society 

of Operations Research, IORC 2016, Shiraz University of 

Technology, Iran, April 27-30, 2016

http://www.Lohmander.com/PL_Shiraz_KEYNOTE_16.pdf &

http://www.Lohmander.com/PL_Shiraz_KEYNOTE_Paper_16.pdf

http://www.lohmander.com/PL_Shiraz_KEYNOTE_16.pdf
http://www.lohmander.com/PL_Shiraz_KEYNOTE_Paper_16.pdf
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Inclusion of:
Linear and quadratic programming
sub problems
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Deterministic systems are not necessarily 

predictable. 

Tung [13] is a fantastic book that contains many 

kinds of mathematical modeling topics and 

applications, including modern chaos theory 

and examples. Such theories and methods are 

also relevant to rational decision making in 

resource management problems. 

[13] Tung, K.K., Topics in Mathematical Modeling, 
Princeton University Press, Princeton, 2007 
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In reality, we often find many decision 

makers that all influence the 

development of the same system. In 

such cases, we can model this 

situation using game theory. Luce and 

Raiffa [11] gives a very good coverage of 

the classical field.

[11] Luce, R.D., Raiffa, H., Games and 
Decisions, Introduction and Critical Survey, 
(First published 1957), Dover Books on 
Mathematics, Dover Publications, Inc., New 
York, 1989
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In games without cooperation, the Nash 

equilibrium theory is very useful. 

Each player maximizes his/her own objective 

given that the other player maximizes his/her 

objective. Washburn [14] focuses on such games 

and the important and often quite relevant subset 

“two person zero sum games”. In such games, 

linear programming finds many relevant 

applications.

[14] Washburn, A.R., Two-Person Zero-Sum Games, 3 
ed., INFORMS, Topics in Operations Research Series, 
2003
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Isaacs [7] describes and analyses 

several games of this nature, but in 

continuous time, with the method 

differential games. This manuscript 

could have been expanded in the 

direction of dynamic and stochastic 

games. 

[7] Isaacs, R., Differential Games, A 
Mathematical Theory with Applications 
to Warfare and Pursuit, Control and 
Optimization, (First published 1965), 
Dover Publications, Inc., New York, 1999 
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Isaacs (1965) analyses many alternative differential game models.

One central version of these models is called “The war of attrition and attack”.
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In the “attrition and attack” problem, the objective function is linear 

in the decision variables and time is continuous.

The optimal control decisions become “bang-bang” (0 or 1), which 

means and the differential equations governing the state variables 

become very simple. Explicit solutions are easily obtained.

With alternative nonlinear specifications of the objective function, 

the optimal decisions may become continuous nonlinear functions.

Then, explicit solutions may no longer be obtained from the 

differential equation system.
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Lohmander, P., A Stochastic Differential (Difference) Game Model 

With an LP Subroutine for Mixed and Pure Strategy Optimization, 

INFORMS International Meeting 2007, Puerto Rico, 

2007 http://www.Lohmander.com/SDG.ppt

Stochastic dynamic games with arbitrary functions, 
with and without mixed strategies

http://www.lohmander.com/SDG.ppt
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Let us conclude this section with 

the finding that:

Mathematical modeling in 

operations research is a rich 

field with an almost unlimited 
number of applications.
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Alternative methods
and properties
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Let us investigate alternative specifications of operations research models and discuss the 

properties. We may consider (1) as a general representation of linear constraints, as we find 

them in most logistics problems, manufacturing problems and many other applied problems. 

We assume that a feasible set exists and know that the feasible set obtained with linear 

constraints is convex. In a production problem, kx  is the production volume of product k and 

the constraints are capacity constraints, where lC is the total capacity of resource l . 
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In case we have a linear objective function, such as the total profit,



1 0 1 1(2) ( ,..., ) ...K K Kx x p p x p x    

, we may express that as (2). 
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Linear programming is a relevant optimization method if we want 

to maximize (2) subject to (1).

The simplex algorithm will give the optimal solution in a finite 

number of iterations.

1 0 1 1max ( ,..., ) ...K K Kx x p p x p x    
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In many applied problems, such as production optimization problems, it is 

also important to be able to handle the fact that market prices often are 

decreasing functions of the produced and sold quantities of different 

products. 

Furthermore, the production volume of one product may affect the 

prices of other products, the marginal production costs of different 

products may be linked and so on. 

Then, the objective function of the company may be approximated as a 

quadratic function (3). 
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(Note that (3) may be further simplified.)
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With a quadratic objective function and linear constraints, we have 

a quadratic programming problem (4). Efficient quadratic 

programming computer codes are available, that have several 

similarities to the simplex algorithm for linear programming. 

The Kuhn-Tucker conditions can be considered as linear 

constraints and in [16] and [1], many such examples are solved. 

[16] Winston, W.L., Operations Research, Applications and 

Algorithms, Thomson, Brooks/Cole, Belmont, USA, 2004 

[1] Anon, LINGO, the Modeling Language and Optimizer, Lindo 

Systems Inc., Chicago, 2013
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In real applications, we are often interested to handle the sequential 

nature of information. 

Market prices usually have to be regarded as partially stochastic. 

We may influence the price level via our production and sales 

volumes. 

Still, there is usually a considerable price variation outside the 

control of the producer. 

Then, we can optimize our decisions via stochastic dynamic 

programming, as shown in the example in (5) and (6). 
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 
( , , )

(5) ( , , ) max ( ; , , ) ( ) ( 1, , ) ( , , ) 0
u U t s m

n

f t s m u t s m n m f t s u n t s m t T 


 
       

 


(6) ( 1, , ) 0 ( , )f T s m s m  

Let us consider the optimal extraction over time from a limited oil reserve. In every period t

until we reach the planning horizonT , we maximize the expected present value, (.)f , for 

every possible level of the remaining reserve, s , and for every market state, m .  
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(5) ( , , ) max ( ; , , ) ( ) ( 1, , ) ( , , ) 0
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(6) ( 1, , ) 0 ( , )f T s m s m  

 (.)f = 0 for 1t T  , which is shown in (6). In all earlier periods, the values of (.)f  are 

maximized for all possible reserve and market levels, via the control u , the extraction level. 

In a period t , before we reach 1t T  , the control u  is selected so that the sum of the 

present value of instant extraction (.)  and the expected present value of future extraction

( ) ( 1, , )
n

n m f t s u n    is maximized. ( )n m denotes the transition probability from 

market state m  to market state n from one period to the next. 
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 
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(5) ( , , ) max ( ; , , ) ( ) ( 1, , ) ( , , ) 0
u U t s m

n

f t s m u t s m n m f t s u n t s m t T 


 
       

 


(6) ( 1, , ) 0 ( , )f T s m s m  

The control u has to belong to the set of feasible controls (.)U  which is a function of t , s  and

m . Equations (5) and (6) summarize the principles and the recursive structure.  
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With the stochastic dynamic programming method as a 

general tool, we may again consider the detailed production 

and/or logistics problem (4). 
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Now, we can solve many such problems, (4), as sub problems, 

within the general stochastic dynamic programming formulation 

(5), (6). Hence, for each state and stage, we solve the relevant sub 

problems.
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Now, the capacity levels (7) may be defined as functions of the 

control decisions, time, the remaining reserve and the market 

state. 

(7) ( , , , )l lC C u t s m l 
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Furthermore, all other “parameters”, may be considered as 

functions, as described in (8), (9) and (10).

(8) ( , , , ) ( , )lk lk u t s m l k  

(9) ( , , , )k kp p u t s m k 

1 2 1 2 1 2(10) ( , , , ) ( , )k k k kr r u t s m k k 
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As a result, we may describe the sub problems as (11) or even as (12).
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Now, we include the sub problems in the stochastic dynamic 

programming recursion equation (13). 

A problem of this kind is defined and numerically solved using LINGO 

software [1] by Lohmander [10]. 
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Optimal oil industry management



EXAMPLE SOLUTION FROM LOHMANDER (2016):

Price is stochastic and partly endogenous. 
p = 30+(m-5)-h

There is only one product: Crude oil.
There are no production constraints.

Optimal decisions:
The optimal extraction level is an increasing function of the 
state of the market and of the size of the remaining reserve.
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Optimal extraction levels

Year = 0
Reserve =           0    1    2    3    4    5    6    7    8    9   10

Market =   1        0    0    0    0    0    1    1    1    1    1    2
Market =   2        0    0    0    0    1    1    1    1    2    2    2
Market =   3        0    0    0    1    1    1    2    2    2    2    2
Market =   4        0    0    1    1    1    2    2    2    2    3    3
Market =   5        0    1    1    1    2    2    2    3    3    3    3
Market =   6        0    1    1    2    2    2    3    3    3    3    4
Market =   7        0    1    2    2    2    3    3    3    4    4    4
Market =   8        0    1    2    2    3    3    3    4    4    4    4
Market =   9        0    1    2    3    3    3    4    4    4    5    5
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Optimal expected present values

Year = 0
Reserve =           0    1    2    3    4    5    6    7    8    9   10

Market =   1        0   28   55   81  107  132  157  181  205  228  251
Market =   2        0   28   55   81  107  133  158  182  206  230  253
Market =   3        0   28   55   82  108  134  159  184  208  232  255
Market =   4        0   28   56   83  109  135  161  186  210  234  258
Market =   5        0   29   57   84  111  137  163  188  213  237  261
Market =   6        0   30   58   86  113  139  165  191  216  240  264
Market =   7        0   31   60   88  115  142  168  194  219  244  268
Market =   8        0   32   62   90  118  145  171  197  223  248  272
Market =   9        0   33   64   93  121  148  175  201  227  252  277
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Observe that (13) represents a very general and flexible way to formulate 

and solve applied stochastic multi period production and logistics 

problems of many kinds. 

The true sequential nature of decisions and information is explicitly 

handled, stochastic market prices and very large numbers of decision 

variables and constraints may be consistently considered. 

Furthermore, many other stochastic phenomena may be consistently 

handled with this approach. 

Several examples of how different kinds of stochastic disturbances may be 

included in optimal dynamic decisions are found in Lohmander [8] and [9].  
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In the game theory literature, [7], [11] and [14], we find many examples of two player 

constant sum games. In (14), we find such an example, with one objective function. The value 

of the game, Z , is what we obtain when one player maximizes and one player minimizes the 

same objective function ( , )Q   . The maximizing player, A , determines control  and the 

minimizing player, B , determines control . 

_ _

(14) min max ( , ) ( , )Q Q
 

     

SEVERAL DECISION MAKERS
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 ( , )Q    can, for instance, represent the difference in profit or resources between two 

companies or countries, during a conflict over a particular economic market, a geographical 

territory or something else. 

_ _

(14) min max ( , ) ( , )Q Q
 

     

During a period of conflict, it may be relevant to define this as a constant sum game. (In other 

cases, con-constant sum games are sometimes more relevant, but then it is not always the case 

that strictly mathematical definitions of the game can be defined and explicitly solved.) 

Of course,  and  may represent vectors.  
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We may develop and analyze constant sum games in a similar way 

as the earlier discussed problems, via the stochastic dynamic 

programming framework. 

In (15) and (16), one player maximizes and one player minimizes 

the value of the game. 

Towards stochastic dynamic game models
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1, 11

2, 22
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(16) ( 1, , , ) 0 ( , , )At Bt At BtZ T s s m s s m  
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In (15) and (16), one player maximizes and one player minimizes the value of the game. The 

maximizing player A controls u and x and the minimizing player B controls v and y . The 

resources of A and B at time t are Ats  and Bts .  

1, 11

2, 22

3, 33

( , , , , ) ( , , , , )

. .
( , ) 0( , , ) ( , , )
( , ) 0

( , ) 0

( 1)

min max ( , ; , , , , , )

(15) ( , , , ) min max

( ) ( 1, ( ,

Bt At

fBt At

f

f

At Bt
y Y t s u v m x X t s u v m

s t
At Bt F x y fv V t s m u U t s m

F x y f

F x y f

A t At

Q x y u v t s s m

Z t s s m

n m Z t s s

 

  
 

 



 
 
 
 
 

  
 
 
 

 

 

( 1), , , ), ( , , , , ), )

( , , , ) 0

B t Bt

n

At Bt

t m v u s s t m v u n

t s s m t T



 
 
 
 
 
 
 
 
 
 
 
 

  





64

Stochastic exogenous disturbances influence the development of the system via the transition 

probabilies ( )n m . The state in the next period is considered as a general function of 

decisions of both players and of other variables and parameters.  

1, 11

2, 22

3, 33
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Note that the specification of the structure described by (15) and 

(16) can be adjusted to specific applications. 

This structure can be regarded as a generalization of many 

problems in [7] and [14]. 

1, 11

2, 22

3, 33
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The control decisions u and v , may represent key decisions, such as total use of constrained 

resources. As seen in (15), these decisions also influence the options and game values in 

future periods. The other control decisions, x and y , where x and y may be vectors, can 

represent the decisions of A and B in very high resolution.  
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3, 33
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Linear or quadratic programming as a tool in the sub problems makes this possible. 

Furthermore, the stochastic dynamic main program can provide solutions with almost 

unlimited resolution in the time dimension. 

The recursive structure of problem solving does not make it necessary to store all results 

in the internal memory. 

Of course, computation time increases with resolution.

The other control decisions, x and y , where x and y may be vectors, can represent the 

decisions of A and B in very high resolution.  

ON COMPUTATION AND THE LEVEL OF DETAIL



68

In simple situations, continuous time versions of dynamic game problems can be 

defined as differential games, as reported by Isaacs [7].

1 1 1 2

2 2 2 1
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With a higher level of detail, we usually have to use discrete time and 

state space. Several interesting discrete examples are found in 

Washburn [14]. 

Washburn writes (citation):

”- It is a curious fact that in no case is a mixed strategy ever
needed; in fact, in all cases each player assigns either all or 
none of his air force to GS.” (end of citation)

The objective function used by Washburn is linear and there
are no synergy effects. Compare the later derivations in this
presentation.
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Lohmander, P., A Stochastic Differential (Difference) Game Model 

With an LP Subroutine for Mixed and Pure Strategy Optimization, 

INFORMS International Meeting 2007, Puerto Rico, 

2007 http://www.Lohmander.com/SDG.ppt

Stochastic dynamic games with arbitrary functions, 
with and without mixed strategies

http://www.lohmander.com/SDG.ppt
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Lohmander, P., A Stochastic Differential (Difference) Game Model 

With an LP Subroutine for Mixed and Pure Strategy Optimization, 

INFORMS International Meeting 2007, Puerto Rico, 

2007 http://www.Lohmander.com/SDG.ppt

Stochastic dynamic games with arbitrary functions, 
with and without mixed strategies
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New proof that mixed strategy Nash equilibria exist

in multi period constant sum games when the payoff

function has nonzero synergy effects
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Probabilities:

(1 )(1 ) (1 )
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x y x y
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11 12 21 22(1 )(1 ) (1 ) (1 )E x y x y x y xy          

11 12 12 21 21 22(1 )E y x xy y xy x xy xy             

11 21 11 12 11 11 22 12 21( ) ( ) ( )E x y xy                
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11 21 11 12 11 11 22 12 21( ) ( ) ( )E x y xy                

In Nash equilibrium:

21 11 11 22 12 21( ) ( ) 0
dE

y
dx

           

12 11 11 22 12 21( ) ( ) 0
dE

x
dy

           



80

* 11 12

11 22 12 21

x
 

   




  

Nash Equilibrium:

* 11 21

11 22 12 21

y
 

   




  



81

* 11 12

11 22 12 21

0 1

0 0 2 2

h h
x

h h h

 

   

   
   

       

Nash Equilibrium:

* 11 21

11 22 12 21

0 1

0 0 2 2

h h
y

h h h

 

   

   
   

       

 * * 1 1
, ,

2 2
x y

 
  
 



82

Finding:

Mixed strategy Nash equilibria exist in multi period 

constant sum games when the payoff function has 

nonzero synergy effects
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Examples from Lohmander (2007)
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Model 3; (x,y,t) = (2,2,T-1)

GS2 = 0

CA2 = 2

GS2 = 1

CA2 = 1

GS2 = 2

CA2 = 0

GS1 = 0

CA1 = 2

3/2*(0-0)

+

0 

= 0

3/2*(0 – (5/3)/(1+4)) + 

0.25*(0) + 0.75*(+1) 

= 0.25

3/2*(0 – (5/3)*2/(1+4))

+

0.25*(0) + 0.5*(1) + 0.25*(2)

= 0

GS1 = 1

CA1 = 1

3/2*(1/(1+4)-0) 

+

0.25*(0) + 0.75*(-1) 

= -0.45

3/2*(1/(1+1) – (5/3)/(1+1))

+

0.5*(0)+0.25*(1) + 0.25*(-1)

= -0.5

3/2*(1/(1+0) – (5/3)*2/(1+1))

+

0.5*(0) + 0.5*(1) 

= -0.5

GS1 = 2

CA1 = 0

3/2*(4/(1+4) – 0)

+

0.25*(0) + 0.5*(-1) + 

0.25*(-2) 

= 0.2

3/2*(4/(1+1) – (5/3)/(1+0))

+

0.5*(0) + 0.5*(-1)

= 0

3/2*(4/(1+0)-(5/3)*2/(1+0))

+ 0

= 1
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Model 3; (x,y,t) = (2,2,T-1)

GS2 = 0

CA2 = 2

GS2 = 1

CA2 = 1

GS2 = 2

CA2 = 0

GS1 = 0

CA1 = 2 0 0.25 0

GS1 = 1

CA1 = 1 -0.45 -0.5 -0.5

GS1 = 2

CA1 = 0 0.2 0 1
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EXAMPLES from Lohmander (2007):

(GS1*, GS2*) at n=3 with Model 4

(0,2) (0,2) (0,0)     Prob = .6666667 * .1515152 =  .101010

(2,0)     Prob = .3333333 * .1515152 =  .050505

(0,1)     Prob = .6666667 * .8484849 =  .565657

(2,1)     Prob = .3333333 * .8484849 =  .282828

Sum  = 1.000000

(0,1) (0,1) (2,0)

(0,0) (1,0) (2,0)
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Detailed study of optimal strategies: 

( , , ) (2,2, 1)t tx y t T 

Optimal strategies with Model 3

(In Model 3, future results are not discounted. d = 1)

P1:

Strategy Probability

Full CA 0.4444444

Full GS 0.5555556

P2:

Strategy Probability

Full CA 0.5555556

50% CA &

50% GS

0.4444444
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Detailed study of optimal strategies: 

( , , ) (2,2, 1)t tx y t T 

Optimal strategies with Model 4

(In Model 3, future results are not discounted. d = 0.85)

P1: P2:

Strategy Probability

Full CA 2/3

Full GS 1/3

Strategy Probability

Full CA 0.1515152

50% CA &

50% GS

0.8484848
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When the importance of instant results in relation to future 

results increases (= when the discounting of future results 

increases from 0 to 15%):

P1 increases the probability of instant full CA.

P1 decreases the probability of instant GS.

P2 decreases the probability of instant full CA.

P2 increases the probability of partial CA and partial GS.



94

Observations:

• Even in case there is just one more period of conflict ahead 
of us and even if the participants only have two units 
available per participant, we find that the optimal strategies 
are mixed.

• The optimal decision frequencies are affected by the result 
discounting.

• The different participants should optimally change the 
strategies in qualitatively different ways when the degree of 
discounting changes.
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Observations cont.:

• Differential games in continuous time can not describe these mixed 
strategies.

• Furthermore, even if we would replace deterministic differential games 
in continuous time by “stochastic differential games” based on 
stochastic differential equations in continuous time, this would not 
capture the real situation, since the optimal frequencies are results of 
the scales of missions. 

• Two resource units used during one time interval will not give the same 
result as one resource unit during two time intervals.



96

Isaacs (1965), in section 5.4, The war of 

attrition and attack: 

“The realistic execution of the strategies would 
comprise of a series of discrete decisions. But we 
shall smooth matters into a continuous process. 
Such is certainly no farther from truth than our 
assumptions and therefore can be expected to be as 
reliable as a stepped model. It is also more facile to 
handle and yields general results more readily.”
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Isaacs (1965), page 66:

• ”Similarily, except possibly on singular surfaces, the 
optimal strategies will be continuous functions 
denoted by ... when they are unique; when they are 
not, we shall often assume such continuous 
functions can be selected.”

Observation (Lohmander):

• With economies of scale in operations, the optimal 
strategies will usually not be continuous functions.
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Isaacs (1965) obtains differential equations that describe the optimal decisions over time 

by the two participants:

1 1 1 2

2 2 2 1

x m c x

x m c x









 

 

The system moves according to these equations:
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The objective function in Isaacs (1965) is linear in the 

decision variables and time is continuous:

 2 1

0

(1 ) (1 )

T

x x dt   
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There is no reason to expect that the 

Isaacs (1965) model would lead to 

mixed strategies.

• The objective function is linear.

• Furthermore there are no scale effects 

in the “dynamic transition”.

• There are no synergy effects in the 

objective function.
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An analogy to optimal control:

The following observations are typical when optimal management of natural resources is 
investigated:

• If the product price is a constant or a decreasing function of the production and sales 
volume and if the cost of extraction is a strictly convex function of the extraction 
volume, the objective function is strictly concave in the production volume. Then we 
obtain a smooth differentiable optimal time path of the resource stock.

• However, if the extraction cost is concave, which is sometimes the case if you have 
considerable set up costs or other scale advantages, then the optimal strategy is 
usually “pulse harvesting”. In this case, the objective function that we are maximizing 
is convex in the decision variable. The optimal stock level path then becomes non 
differentiable.
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Technology differences:

• The reason why the two participants should make different decisions 
with different strategies is that they have different “GS-technologies”. 
These technologies have different degree of convexity of results with 
respect to the amount of resources used.

• Such differences are typical in real conflicts. They are caused by 
differences in equipment and applied methods. Of course, in most 
cases we can expect that the applied methods are adapted to the 
equipment and other relevant conditions.
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Conclusions (from Lohmander (2007):
This paper presents a stochastic two person differential 

(difference) game model with a linear programming subroutine
that is used to optimize pure and/or mixed strategies as a 
function of state and time.

In ”classical dynamic models”, ”pure strategies” are often
assumed to be optimal and deterministic continuous path
equations can be derived. In such models, scale and timing 
effects in operations are however usually not considered. 

When ”strictly convex scale effects” in operations with defence
and attack (”counter air” or ”ground support”) are taken into
consideration, dynamic mixed OR pure strategies are optimal in 
different states. 

The optimal decision frequences are also functions of the relative 
importance of the results from operations in different periods.

The expected cost of forcing one participant in the conflict to use
only pure strategies is determined.

The optimal responses of the opposition in case one participant in 
the conflict is forced to use only pure strategies are calculated.

Dynamic models of the presented type, that include mixed 
strategies, are highly relevant and must be used to determine
the optimal strategies. Otherwise, considerable and quite
unnecessary losses should be expected. 
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GENERAL CONCLUSIONS
Operations research contains a large number of alternative approaches. 

With logically consistent mathematical modeling, relevant method 

selection and good empirical data, the best possible decisions can be 

obtained. 

This paper has presented arguments for using some particular 

combinations of methods that often are empirically motivated and 

computationally feasible.  
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