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Abstract

Mohammadi Limaei S., Lohmander P., Olsson L. (2017): Dynamic growth models for continuous cover multi-
species forestry in Iranian Caspian forests. J. For. Sci., 63: 519–529.

This study concerns some of the relevant topics of the Iranian Caspian forestry planning problem, in particular the first 
central components in this modelling process, such as forest modelling, forest statistics and growth function estima-
tions. The required data was collected from Iranian Caspian forests. To do so, 201 sample plots were determined and 
the parameters such as number of trees, tree diameter at breast height and tree height were measured at each sample 
plot. Three sample plots at different 3 elevations were chosen to measure the tree increment. Data has been used to 
estimate a modified logistic growth model and a model that describes the growth of the basal area of individual trees 
as a function of basal area. General function analysis has been applied in combination with regression analysis. The 
results are interpreted from ecological perspectives. Furthermore, a dynamic multi-species growth model theory is 
developed and analysed with respect to dynamic behaviour, equilibria, convergence and stability. Logistic growth 
models have been found applicable for continuous cover forest management optimization. Optimization of manage-
ment decisions in a changing and not perfectly predictable world should always be based on adaptive optimization.
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Forestry in Iranian Caspian forests is based on 
continuous cover forestry (CCF) management 
principles. Many different species of trees grow 
together in large parts of these forests. CCF of-
ten leads to higher expected present values than 
rotation forestry with clear cuts (Haight 1987; 
Pukkala et al. 2010; Tahvonen et al. 2010). Fur-
thermore, CCF has environmental advantages of 
several kinds. Mixed species forests give advan-
tages compared to monocultures, such as options 
to adapt harvesting of different species to changes 

in market prices, climate, species specific damage 
etc. Lohmander (2000, 2007) presented these per-
spectives and general results. Forest industries in 
Iran produce sawnwood and wood-based panels 
as well as pulp and paper from hardwood species. 
Moderate volumes of forest products, mainly pa-
per, are imported. Modest quantities of wood are 
burned as fuel (Mohammadi Limaei 2010).

Forests are dynamic biological systems that 
continuously change over time. It is required 
to project these changes in order to obtain rel-
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evant information for managing and decision 
making. Forest management decisions are made 
based on information about both current and 
future resource conditions. Inventories taken at 
one instant in time provide information on cur-
rent wood volumes and related statistics. Growth 
and yield models describe forest dynamics (i.e., 
growth, mortality, reproduction, and associated 
changes in the stand) over time and hence have 
been widely used in forest management because of 
their ability to update inventories, predict future 
yield, and to explore management alternatives and 
silvicultural options, thus providing information 
for decision-making (Burkhart, Brooks 1990; 
Vanclay 1994). Growth modelling has a long his-
tory in forestry. In the early 1850s, central Euro-
pean foresters used graphical methods to model 
the growth and production of forests. Yield tables, 
based on complete observations of yield through-
out entire rotations, were constructed for impor-
tant tree species in Europe (Vuokila 1965).

Models provide an efficient way to prepare re-
source forecasts, but a more important role may 
be their ability to explore management options 
and silvicultural alternatives. For example, forest-
ers may wish to know the long-term effect on both 
the forest and on future harvests, of a particular 
silvicultural decision, such as changing the cut-
ting limits for harvesting. With a growth model, 
they can examine the likely outcomes, both with 
the intended and alternative cutting limits, and can 
make their decision objectively. The process of de-
veloping a growth model may also offer interesting 
new insights into stand dynamics (Vanclay 1994). 
Growth models provide a reliable way to examine 
silvicultural and harvesting options as well as to 
determine the sustainable timber yield for different 
areas and management strategies (Vanclay 1994). 
A growth model also has a broader role in regional 
forest management and in the formulation of for-
est policy. A forest growth model predicts future 
values of certain outputs such as timber volume, 
given inputs (control variables) such as silvicultural 
treatments. Both inputs and outputs are functions 
of time. This fact, and the dependence of the out-
puts on the entire past history of the stand, have 
caused considerable difficulties and confusion in 
growth modelling. The way out is well-known in 
other fields dealing with dynamic systems, and may 
be called the state-space approach (Bailey, Clut-
ter 1974). A growth model that was initially pro-
posed by Verhultst (1845) is called the logistic 
growth model or the Verhulst model. The biological 
growth function is built on a model of population 

dynamics which was first presented by Schaefer 
(1954). Schaefer’s model rests upon the so-called 
Pearl-Verhultst, or logistic, equation of population 
dynamics. 

Many papers have been written about growth 
functions in uneven-aged forests. It is not our aim 
to review all of them, but we mention some of them 
here. 

The number of options to model the dynamics 
of forests is almost unlimited. You may use stand 
models, models of individual trees, diameter class 
models, models that describe altitude, slope and 
directions, models in continuous time, in discrete 
time etc. The international demand for forest sec-
tor products has started to change. Demand for 
some paper qualities has sharply decreased, mainly 
depending on lowered demand in the new internet 
based society. There exists much evidence about 
this fact, e.g. Kennan et al. (2014) describing the 
problems in Canada. This transformation affects 
the whole forestry supply chain, which has to be 
considered as an integrated dynamical system 
with a lot of disturbances. Hence, when to man-
age the forest using multi-species CCF, in our case 
in Iran, the main question for the forest industry 
is how much better this management regime is if 
the whole supply chain is considered and not only 
the management of the forest. However, we have 
to start in the forest and that part is described in 
this paper. The Iranian Caspian forests are mixed 
uneven-aged stands consisting of broadleaf species 
exploited for timber production according to the 
forest management plans for over 40 years. Forest-
ry in Caspian forests is based on CCF management 
principles. Many different species of trees grow to-
gether in large parts of these forests. Studying the 
growth of natural uneven-aged forests for forest 
management practice requires to reflect the growth 
of stand in the relationship of both the growth and 
competition factors. Therefore, there is an urgent 
need to develop growth models for uneven-aged 
forests that are suitable to the actual situation of 
forest production, and satisfy the requirements of 
sustainable forest management (Nguyen 2009). 
The stock, size of  individual tree in each sample 
plot, kind of species, slope, aspect, elevation are 
the most effective factors that influence the forest 
growth.

There are some studies that dealt with mea-
suring forest growths in Iranian Caspian forests. 
Bonyad (2005) estimated the volume growth at 
3 different elevations using a multivariate statical 
method in Caspian forests. Heshmatol Vaezin 
et al. (2008) provided a pilot increment model for 
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major species in the Caspian forests including 
hornbeam (Carpinus betulus Linnaeus), oriental 
beech (Fagus orientalis Lipsky) and alder (Alnus 
cordata C.A. Mey) by routinely measured vari-
ables in forest inventories. Zahedi Amiri (1991) 
determined the annual growth rate of an uneven-
aged forest in Caspian forests and the average an-
nual increment of the forest was 8 m3·ha–1. Loh-
mander et al. (2016) estimated basal area growth 
and volume functions for beech in Iranian Cas-
pian forests. Hatami et al. (2017) investigated a 
basal area increment model for individual trees 
in mixed continuous cover forests in Iranian Cas-
pian forests.

In all of the previous researches, the studies fo-
cused on relations between growth and some pa-
rameters like diameter, volume, etc. Hence, there 
was not any research in Iranian Caspian forests 
aimed at development of a dynamic multi-species 
growth model. There are some studies in the other 
countries related to a dynamic growth model such 
as Pacala et al. (1996), who simulated the long-
term dynamics (species composition and basal 
area) of temperate mixed forest using a distance-
dependent tree model.

Therefore, the aim of this study is to estimate a 
dynamic multi-species growth model with respect 
to dynamic behaviour, equilibria, convergence and 
stability.

MATERIAL AND METHODS

In order to collect volume and growth data, dis-
trict No. 2 of Losara forests was chosen that is lo-
cated in the Ploroad watershed (watershed No. 28), 
east of Guilan province in the north of Iran. Its 
latitude ranges from 36°57'38''N to 36°59'40''N and 
its longitude ranges from 50°12'10''E to 50°16'40''E 
(Fig. 1). These forests are located in the Caspian 
mountainous area and its altitude ranges from 400 
to 1,200 m a.s.l. These are uneven-aged forests and 
the main species are: hornbeam (Carpinus sp.), 
beech (F. orientalis), oak (Quercus sp.), alder (Al-
nus sp.) etc. 

The inventory area was 576 ha. An inventory was 
performed at the study area in 2009. The locations 
of sampling points were found by Global Position-
ing System in 2014. A systematic random sampling 
method with a network of 150 × 200 m was used 
for the inventory (Fig. 2). The shape of sample plot 
was circular with the radius of 17.84 m and area 
of 1,000 m2. Therefore, 201 sample plots were de-
termined and some parameters such as number of 
trees, tree DBH and tree height were measured at 
each sample plot.

In CCF, the forest growth is influenced by stand 
density, the size of individual trees in each sam-
ple plot, kind of species, slope, aspect, elevation, 
precipitation and temperature. Therefore, 3 sam-

Fig 1. Iranian forests, Iranian Caspian forests and the study area (watershed No. 28)
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ple plots at 3 different elevations were chosen to 
measure the tree increment (Schütz 2006). For-
est growth may decrease with increasing altitude 
due to a decrease of temperatures and rainfall and 
shorter growing seasons. 

Table 1 shows compartment areas and forest 
types in the study area. Hornbeam is a dominant 
species in the study area. Beech is the second spe-

cies in the study area based on frequencies and area 
coverage.

Summary of the inventories in 2009 and 2014 is 
shown in Table 2.

Three sample plots were chosen to measure the 
forest growth using an increment borer. The sam-
ple plots were situated at different altitudes (400, 
700 and 1,000 m a.s.l.). The aspects of 3 sample 
plots along altitude variations were east, west and 
north, respectively.

Data analysis. The available empirical data was 
used to estimate a modified logistic growth model 
where stand density, altitude and species mixture 
were considered as explanatory variables. Logistic 
growth models have been found useful in continu-
ous cover forest management optimization and 
examples of such studies are found in Lohman-
der (2007) and Lohmander and Mohammadi 
Limaei (2008).

For these reasons, it was necessary to remove 
some possible explanatory variables from the 
growth function and to adjust the functional form. 
The parameters of a function of the following type 
were estimated via ordinary least squares (OLS) re-
gression analysis (Eq. 1):

Table 1. Areas and forest types of compartments (Losara 
district), Iranian Caspian forests

Compartment Area (ha) Forest type
222 82 hornbeam-date-plum, alder
223 57 hornbeam-Persian ironwood
224 37.5 hornbeam-alder, date-plum

225 57.5

hornbeam-beech-alder
226 44
227 66
228 47.5
229 43.5

230 58 hornbeam-alder, date-plum
231 102 hornbeam-Persian ironwood
211 28.5 Caspian locust-Persian ironwood
Total 576

Fig 2. Location of sample plots
L – line of inventory, P – plot
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1dx xx sx kA
dt K

      
 

� (1)

where:
x•	 – growth of species X (m3·ha–1·year–1),
x	 – stock level of species X (m3·ha–1),
t	 – time (year),
s	 – �intrinsic growth rate, it shows how much a species 

can grow between successive time periods,
K	– �carrying capacity (m3·ha–1), it indicates the maxi-

mum population of a species in an environment over 
a period without destroying the resource base,

k	 – altitude parameter,
A	– altitude (m a.s.l.).

We may express the growth function as in Eq. 2:

2dx sx sx x kA
dt K



    � (2)

We can define the parameter of the squared stock 
as Eq. 3:

sb
K

  � (3)

where:
b – parameter of the squared stock.

Then we get this function, suitable for OLS re-
gression analysis, as Eq. 4:

2dxx sx bx kA
dt



      � (4)

where:
ε	 – �series of random errors with normal distribution 

error,
E(ε)	 – expected ε, E(ε) = 0, E(ε2) = σ2,
σ	 – standard deviation of the error term.

In some cases, it is possible to determine dynam-
ic multi-species model parameters via steady-state 

observations of unmanaged forests. If we can ob-
serve x and y in several equilibria, in some cases we 
can estimate relations between the parameters. We 
can include altitude and slope exposure as parame-
ters and evaluate the equilibria at different altitudes 
and directions of slope. A dynamic multi-species 
model describes how trees of different species de-
velop in a mixed stand over time.

A system of two extended logistic models is ex-
plained below, as Eq. 5:

 

 

α β γ

α β γ

x xx xy

y yx yy

dx x x y
dy
dy y xy y
dt

x




    

     �

(5)

where:
αx, βxx, γxy, αy, βyx, γyy  – set of parameters,
y	 – stock level of species Y,
y•	 – growth of species Y (m3·ha–1·year–1).

RESULTS

The result of OLS regression analysis is shown in 
Table 3. The F-value and the R2 value indicate that 
model fits the data extremely well.

The intrinsic growth rate and the parameter of 
the squared stock have significant P-values on a 
95% significance level. These parameters also have 
the expected signs and they jointly give a reason-
able result in the carrying capacity calculation, 
which is found below (Eqs 6 and 7). We note that 
the intrinsic growth rate is very close to 2%:

sK
b

 
�

(6)

Table 2. Summary of the inventories in 2009 and 2014

Compartment No. of sample plots
Volume (m3·ha–1) No. of trees per hectare

2009 2014 difference 2009 2014
222 25 292.83 308.5 15.67 292 301
223 17 206.5 219 12.5 437 439
224 14 304.1 300 –4.1 197 207
225 19 248.4 259 10.6 144 151
226 14 197.3 204.6 7.3 164 167
227 20 250.5 253.5 3 182 190
228 16 192.2 206 13.8 127 132
229 14 206.5 209.1 2.6 127 125
230 20 256 263 7 124 138
231 33 283.8 297 13.2 180 187
211 9 178 188 10 234 230
Total 201
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 0.0199707 767.45
0.0000260227

K   


� (7)

As a result, the carrying capacity can be estimat-
ed to be approximately 767 m3·ha–1.

However, the P-value cannot be considered sig-
nificant on a 95% significance level. However, since 
we expect the parameter to be relevant and since 
we cannot statistically reject the presence of a 
strictly negative parameter, we keep the estimated 
parameter in the growth equation (Eqs 8 and 9):

 1dx xx sx kA
dt K

      
 

� (8)

0.0200 1 0.000647
767

dx x xx A
dt

      
 

� (9)

Growth according to the estimated function is 
shown in Fig. 3. In Fig. 4, we find the growth as a 
function of the stock (at sea level).

It is not usually sufficient to know the total growth 
per hectare. In order to optimize the management 
of forests with trees of different dimensions, it is 
also important to determine how trees of different 
sizes compete with each other. 

Then we estimated the following function (Eq. 10),  
diameter growth of the individual tree per time 
unit (mm·yr–1):

31.506969 0.94225 ln( ) 0.000183455D D B
t


  


�(10)

where:
D	 – diameter of the individual tree (mm),
B	 – �basal area of bigger trees (trees with large diameter) 

per area unit (m2·ha–1).

The development of individual trees affected by 
competition is shown in Fig. 5.

The following function (Eq. 11) for the growth of 
individual trees was estimated from the empirical 
data, using OLS regression:

20.1586038 ln( ) 0.07038919999z     � (11)

where: 
Φ	– basal area of individual tree – before growth (m2),
z	 – �basal area growth of individual tree, as the area 

growth during the next ten years divided by 10 
(m2·year–1).
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Fig. 3. Growth according to the estimated function as a 
function of stock and altitude. Note that the elevation levels 
in the empirical material are found in the interval from 580 
to 1,080 m a.s.l. The stand densities vary between 188 and 
320 m3·ha–1 in the raw data
G_0 – altitude level 0 m a.s.l., G_1,000 – altitude level 
1,000 m a.s.l.

Fig. 4. Growth according to the estimated function as a 
function of the stock (if the forest is located at sea level). 
The function has been extrapolated far outside the empiri-
cal material. Note that there are two dynamic equilibria, 
at the stand densities 0 and 767 m3·ha–1 (= the carrying 
capacity). The stock 0 is an unstable equilibrium and the 
carrying capacity represents a stable equilibrium

Table 3. Results of regression statistics

Parameter Value Standard error t-Value P-value
s 0.019970746 0.004215938 4.736963898 0.001469688
b –2.60227E-05 1.11457E-05 –2.334774567 0.047804052
k –0.000646858 0.000452609 –1.429175526 0.190816399

s – intrinsic growth rate, it shows how much a species can grow between successive time periods, b – parameter of the 
squared stock, k – altitude parameter, multiple R = 0.998, R2 = 0.996, adjusted R2 = 0.870, standard error = 0.2044, F = 
699.3457225, P-value for F = 4.93053E-09, observations = 11
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We may regard this as an approximation of con-
tinuous growth (Eq. 12):

z
t

d
dt

 




 �

(12)

In slowly growing forests, the approximation is 
rather good: (i) general regression statistics: F = 
211.8, R2 = 0.872, (ii) t-values of the estimated pa-
rameters: t(Φ) = 13.09, t(Φ2ln(Φ)) = 9.56.

Since the parameters are not determined with in-
finite precision (compare the t-values), we reduce 
the precision of the parameters in the following 
manner (Eq. 13):

20.1586 ln( ) 0.07039z    �
(13)

Of course, the function could also be expressed in 
this way (Eq. 14):

(0.1586 ln( ) 0.07039)z      � (14)

Basal area growth of individual tree according to 
Eq. 11 is shown in Fig. 6.

Dynamic two species model with competition

Dynamic multi-species model parameters were 
determined via steady-state observations of un-
managed forests according to Eq. 5.

If we can observe x and y in several equilibria, at 
different altitudes and directions in Eq. 5, in some 
cases we can estimate relations between the pa-
rameters and simultaneously determine the species 
specific sensitivities to altitude and direction ac-
cording to the following cases (Figs 7–10). 

DISCUSSION

The aim of this study is to estimate a dynamic 
multi-species growth model with respect to dy-
namic behaviour, equilibria, convergence and 
stability in Iranian Caspian forests at 3 different 
elevations.

The general dynamics of forests based on logistic 
growth models was analysed and dynamic equi-
librium conditions (stand densities and species 
mixes) for different altitudes were determined. The 
result of this research is in line with studies such as 
Lohmander (2007) and Lohmander and Moha-
mmadi Limaei (2008).

In some cases, dynamic multi-species model pa-
rameters can be determined via steady-state ob-

servations of unmanaged forests. Optimization of 
management decisions in a changing and not per-
fectly predictable world should always be based 
on adaptive optimization. Lohmander (2000) de-
scribed these principles and typical implications 
for optimal forestry decisions. Adaptable logistic 
growth functions work well in such cases.

It would have been valuable to have more varia-
tion in the raw data. Now, the degrees of compe-
tition and the stand densities have low degrees of 
variation. In the presently analysed raw data, there 
are correlations different from zero between the 
possibly explaining variables direction of slope and 
altitude. There are also correlations different from 
zero between species and altitude. For instance, 
beech is almost only found at the highest eleva-
tions. In the future, datasets without such correla-
tions should be developed.

The parameter of altitude in Eq. 5 is in general 
expected to be negative for the following reasons. 
Usually, the growth conditions get worse at high-
er altitudes. The temperature is usually lower, the 
amount of continuously available water is usually 
reduced and the growing seasons are shorter. On 

-1

0

1

2

3

4

5

0 5 10 15 20 25 30 35D
ia

m
et

er
 g

ro
w

th
 (m

m
·y

r–1
)

Basal area of bigger trees (m2·ha–1)

0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Basal area of the individual tree before growth (m2)

of
 th

e 
in

di
vi

du
al

 tr
ee

 (m
2 ·y

r–1
)

Ba
sa

l a
re

a 
gr

ow
th

 

Fig. 5. The development of individual trees is affected 
by competition. This is one example of such a case. The 
diameter of the individual tree is assumed to be 200 mm 
before growth

Fig. 6. Basal area growth of the individual tree as a func-
tion of the basal area of the individual tree before growth 
according to the estimated function
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the other hand, in this particular case, the tree spe-
cies frequencies and the directions of the slopes 
are correlated with the altitude. For these reasons, 
the interpretation of the parameter k becomes less 
unambiguous. In any case, the regression analysis 
shows that the estimated parameter obtained the 
expected negative sign.

According to the results of Eq. 9, the diameter 
growth is a strictly increasing, strictly concave 
function of the diameter of the individual tree, 
which is similar to the results of Lhotka and 
Loewenstein (2011). Furthermore, note that the 

diameter growth is a strictly decreasing concave 
function of the basal area of bigger trees. In the ar-
ticle, the exact functional form of the growth func-
tion was not motivated and the asymptotic proper-
ties of the function were not investigated. Hence, 
we may and should question if the influence of the 
diameter on diameter growth follows a logarithmic 
function. We should also question if the influence 
of competition can be described by the cube of the 
basal area of bigger trees. For instance, it is very 
hard to imagine negative diameter growth, which 
we may sometimes obtain with this function. It is 

Fig. 7. In these cases, the system 
converges to a unique and stable 
equilibrium, where we have only 
species y (a), only species x (b), both 
species x and y (c)
x• – growth of species X (m3·ha–1· 
year–1), x – stock level of species X 
(m3·ha–1), αx, βxx, γxy, αy, βyx, γyy – set 
of parameters, y• – growth of spe-
cies Y (m3·ha–1·year–1), y – stock 
level of species Y, xe – equilibrium 
value of x, ye – equilibrium value 
of y, x0

e equilibrium value of x cal-
culated by Cramer’s rule applied 
to the differential equation system,  
y0

e – equilibrium value of y calculated 
by Cramer’s rule applied to the dif-
ferential equation system

(a)

(b)

(c)
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Fig. 8. Derivation of the multi-species 
equilibrium solutions found in Figs 7c 
and 9
x• – growth of species X (m3·ha–1·year–1),  
x – stock level of species X (m3·ha–1), 
αx, βxx, γxy, αy, βyx, γyy – set of param-
eters, y• – growth of species Y (m3·ha–1· 
year–1), y – stock level of species Y, xe – 
equilibrium value of x, ye – equilibrium 
value of y, x0

e – equilibrium value of x 
calculated by Cramer’s rule applied 
to the differential equation system, 
y0

e – equilibrium value of y calculated 
by Cramer’s rule applied to the dif-
ferential equation system

Fig. 9. In this case, the system has one 
unstable multi-species equilibrium 
and two stable single species equilibria
x• – growth of species X (m3·ha–1·year–1),  
x – stock level of species X (m3·ha–1), 
αx,  βxx,  γxy,  αy,  βyx,  γyy – set of  
parameters, y• – growth of species Y 
(m3·ha–1·year–1), y – stock level of spe-
cies Y, xe – equilibrium value of x, ye – 
equilibrium value of y, x0

e – equilibrium 
value of x calculated by Cramer’s rule 
applied to the differential equation 
system, y0

e – equilibrium value of y 
calculated by Cramer’s rule applied to 
the differential equation system

Fig. 10. In this case, the system con-
verges to a unique and stable equilib-
rium, where we have both species x 
and y. The graph shows how the stable 
equilibrium changes under the influ-
ence of parameter changes
x• – growth of species X (m3·ha–1·year–1), 
x – stock level of species X (m3·ha–1), αx, 
βxx, γxy, αy, βyx, γyy – set of parameters, 
y• – growth of species Y (m3·ha–1·year–1), 
y – stock level of species Y, kx, ky – set 
of parameters, xe – equilibrium value 
of x, ye – equilibrium value of y, x0

e – 
equilibrium value of x calculated by 
Cramer’s rule applied to the differential 
equation system, y0

e – equilibrium value 
of y calculated by Cramer’s rule applied 
to the differential equation system, h – 
parameter that influences the growth 
of the two species (for instance, h may 
denote the altitude of the site), dh – 
change of h (for instance, if dh > 0, this 
may mean that the altitude increases, 
this influences the growth of the two 
species in different ways)
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however very likely that the general properties of 
the function are close to reality, at least within the 
investigated parameter ranges. 

It would be interesting to know how the individ-
ual trees grow in the forests of Iran. The estimated 
function (Eq. 9) shows that the growth of the indi-
vidual tree strongly increases with size, which is sup-
ported by functions presented by Schütz (2006).  
When the tree is much bigger than the neighbour 
trees, the competition for light is almost eliminat-
ed. When the tree lives in the shade of the others, 
the struggle for existence is difficult.

Fig. 6 shows that the basal area growth appears 
to be a strictly convex function of the basal area 
before growth, at least in the range illustrated in 
Fig. 6. This is understandable from the following 
perspectives.

As the size (in different dimensions) of the indi-
vidual tree increases, it gets access to more light, 
which is essential to the photosynthesis. Further-
more, it is likely that the area of the root system 
increases and that the available supplies of water 
and nutrients also increase. Hence, we should ex-
pect the total growth of the tree to increase with 
size. However, the trees live in a world of competi-
tion. The distribution of resources within the trees 
should be assumed to be optimized, since trees that 
do not optimize the use of resources, do not usually 
survive in the competition. Hence, it is very likely 
that it is optimal for the individual tree to use the 
available resources in this way: 
(i)	� If the tree is small (and usually also has a low 

basal area) in relation to competing trees, it lives 
in the shadow and has limited access to light. Fur-
thermore, the wind is not very strong because of 
protection from taller trees. Hence, it is rational 
to use most of the resources to become taller and 
get more access to light in the future. Growth of 
the basal area, which may stabilize the tree, is not 
very important. So, the basal area growth is low 
(and stable) when the basal area is low (compare 
Fig. 6);

(ii)	�If the tree is tall (and usually also has a large basal 
area) in relation to competing trees, it has good 
access to light. Hence it is not very important 
to become taller. Furthermore, if it becomes 
even taller, the winds may be too strong and the 
tree may fall down in a future storm. Hence, the 
growth resources should be used to stabilize the 
tree. The basal area increases and the area of the 
root system increases, giving even more access to 
water and nutrients. So, the basal area growth is 
a rapidly increasing function of basal area when 
the basal area is high (compare Fig. 6).

Results indicated that if the size of the individual 
tree increases, the number of bigger trees is re-
duced (Fig. 5). Hence, we should expect the growth 
of the individual tree to increase, in a strictly convex 
fashion, as the size of the individual tree increases  
(Fig. 6). These results are in line with Schütz 
(2006). According to the function presented by 
Schütz (2006), the growth of the individual tree is 
strongly reduced (via the cubic competition effect) 
by the competition from bigger trees.

Of course, it is not possible to determine the pre-
cise functional form without information about the 
tree size frequency distribution and other related 
conditions. 

The results of this study could be used as inputs to 
an integrated optimization model of the forest sup-
ply chain, from forest production, via logistics, to 
the forest industry mills. A growth model can help 
the forest managers to have deep understandings of 
forest and to better explain data, forecast the future 
of forest dynamics with greater reliability, and to 
see the potential ramifications of decisions.
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