[ alma,d, Rete ~

?| SVERIGES LANTBRUKSUNIVERSITET
Wy Institutionen for skogsskotsel

Silvicultural alternatives

Proceedings from an internordic workshop
June 22-25 1992

Editor
Mats Hagner

Institutionen for skogsskotsel ~ Swedish University of Agricultural Sciences
Rapporter 35 Department of Silviculture
Umea 1992 Reports, No. 35




DISTRIBUTION:

Sveriges lantbruksuniverstitet
Institutionen for skogsskotsel
901 83 UMEA, Sweden

Tel: 090-16 62 74

Fax: 090-16 76 69

ISSN 0348-8968
ISRN SLU-SSKTL-R--35--SE




Adaptive economic forest mana-
gement

Lohmander, P., Assistant professor, Dept
of Forest Economics, The Swedish Uni-
versity of Agricultural Sciences, 5-901
83 Umed, Sweden,

Not yet rejected hypotheses and results:

1. It is not possible to make reliable and
detailed long term (10 years or more)
predictions of the developments of the
markets and the biologically relevant
environment. Hence, we should regard the
long term behaviour of the generalized
environment as a stochastic process.

2. We can often increase the expected
economic present value of the profit from
forestry in the presence of stochastic
economic and biological changes.

3. It is usually economically optimal to
strongly modify the forest management
methods in the presence of stochastic
economic and biological changes.

4. Itis important to create a flexible decision
situation in later stages of forest planning.
The optimal level of future flexibility is also
an economic problem. Key concepts include:
a) Multi species investments. b) Continuous
observation of the market development and
the changes in the biological environment. ¢)
Continuousadaptive adjustmentof the forest
management decisions to the latest informa-
tion.

Methods: Stochastic dynamic programming
and related methods for multistage adaptive
optimization.
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Continuos harvesting with a
nonlinear stock dependent
growth function and stochastic
prices: Optimization of the
adaptive stock control function
via a stochastic quasi-gradient
method. *

Lohmander, P., Assistant professor, Dept
of Forest Economics, The Swedish Uni-
versity of Agricultural Sciences, S-901
83 Umed, Sweden,

* A detailed appendix may be obtained from
the author.

Abstract

The continuous harvesting problem has
gained much attentionin the literature. Very
detailed and instructive discussions of the
qualitative properties of theoptimal solutions
indeterministicmodels have been presented.
Highly detailed analytical models of the
harvesting problem with stochastic prices
and growth have also been presented where
the main ambition has been to report the
qualitative answers to the questions: - In
what directions are the optimal control
decisions changed in the presence of
increasing risk in markets and /or growth ?
This paper contains agrowthmodel of a type
often used inanalytical deterministic control
optimizations. Riskisintroduced in the future
price path. The harvest decisions which
maximize the expected present value of all
profits over time are made adaptively,
conditional on the latest available price and
stock level information.

In this paper, such harvest control functions
arcoptimized viaa stochastic quasi-gradient
method. In principle, this method could be
replaced by stochastic dynamic
programming. Then, however, the
numerically obtainable discrete state space
resolution would restrict the quality of the
results. In thismodel, the state and the control
arecontinuous variables. The control function
parameter optimizations are made for dif-
ferent combinationsof exogenous parameter
assumptions. The objective functionis, within
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the gradient method optimization routine,
sequentially estimated via large numbers of
long horizon stochastic simulations of the
complete adaptively controlled system.
Finally, the optimized adaptive harvest
function is used in connection to a large
number of new stochastic price series. The
expected present value of adaptive
harvesting with the optimized function is
compared to the expected present value
which is obtained when a deterministic rule
is used. The optimal harvest and stock levels
are discussed and compared to the results
obtained from deterministic optimal control
models. It is found that considerable
economic gains can be obtained when the
optimized adaptive control function is used
instead of a deterministic control rule. Even
very low levels of stochastic price variation
make it economically optimal to control the
forest stock in a way which is very different
from what you should do if you follow rules
derived from deterministic models. The op-
timal control and stock levels change
drastically over time.

Acknowledgements

I gratefully acknowledge research grants
from Brattdsstiftelsen for Skogsvetenskaplig
Forskning, Cellulosaindustriens Stiftelse for
Teknisk och Skoglig Forskning samt Ut-
bildning, Domainverket, Lars-Erik
Thunholms Stiftelse fér Fraimjande av Ve-
tenskaplig Forskning and Skogs- och Jord-
brukets Forskningsrdd. Master of Science
Peichen Gong checked my manuscript.

Introduction

Is there a practical way to find the optimal
market adapted harvest policy in natural
resource economics when the stock of the
natural resource and the harvest level are
described as continuous variables ?

This question will be discussed in this paper
under the assumptions that the price of the
natural resource is a stochastic process and
that the growth of the natural resource follows
a logistic function.

A preliminary and explorative analysis will
be made as an illustration of continuous
thinning in forestry.



Thinning and the literature

The problem of thinning in forestry hasbeen
studied from many perspectives and for a
long time. We may view the thinning pro-
blem as the continuous forest control pro-
blem. We may, over time, control the forest
via changing thinning levels. We may
sequentially take new information into
account in the decision problem. If we want
to, we can harvest all of the trees in the forest
stand. Such an activity is usually defined as
a final felling or a clear cut. A forester would
never call that a thinning. From a control
theoretical point of view, it is just a special
case of "thinning”. One of the problems in
forestry is to find a reliable growth function
that can be applied to the relevant economic
problem.

The age structure, the diameter, height and
speciesdistributions, make this complicated.
Frequently, foresters want very detailed in-
formation about how the trees in the forest
grow. Obviously all of the mentioned
distributions also affect the local growth
conditions and hence the growth of the trees
in different parts of the stand. In some cases,
a high stand density is desirable in order to
improve the quality development.
Unfortunately, in the end, it turns out that it
is not possible to treat all of the interesting
sub-phenomena within one model. We have
to select the most interesting variables and
try to control the most important things.
Thatis the purpose of this paper. Some of the
more recent papers in this field that should
bementioned aregivenbelow. Itisimpossible
to discuss all of them here. The reader is
encouraged to consult them for interesting
ideas.

Thinning, emphasis on economics and
decision theory

Brazee and Mendelsohn (1990), Gong (1992),
Haight (1990), Kaya and Buongiorno (1987),
Kaya and Buongiorno (1 989), Lohmander
(1987), (1988a), (1990a), (1990b), (1990c), Reed
and Apaloo(1991), Solbergand Haight (1991),
Teeter and Caulfield (1991), Valsta (1992)

Thinning, emphasis on silviculture and
growth

Hagner(1990a), (1 990b), (1992), Klensmeden
(1984), Lindman (1984), Lundqvist (1989),

Mielikiiinen (1991), Nilsen (1988)

Growth functions and estimations
Carlsson (1991), Eriksson (1986), Huuri,
Lihde and Huuri (1987), Somers and Farrar
(1991), Valinger (1990)

Some other papers in fields of more partial
relevance to the content of this paper arealso
included in the reference list. Some of the
more methodology oriented publications will
bediscussed in the later sectionsin connection
to the analysis.

The model and the optimization problem
The objective functionis the expected present
value of all present and future harvesting. In
the discrete time version of the problem, the
present value © may be written as in (1)

F?—:;, o P, (1)

t is the time period, P is net price (price -
variable costs)and hisharvestlevel.rdenotes
the rate of interest. Real prices and rates of
interests will be used. Fixed costs are not
explicitly treated in this paper since it will be
assumed that such costs really are fixed and
donotaffectoptimal behaviour. Moredetails
concerning numerical assumptions and
bounds will be found below.

A”classical” deterministic,continuous state,
continuous time, natural resource model,
different versions of which have been
presented by Clark (1976), is shown in (2)
and (3):

max s=fe“"‘R(h} dt 2)
[
s.t. * = F(x)-h (3)

R(.) is the net revenue function, F(.) is the
growth function (strictly concave) and x is
the stock of the natural resource. In the
analytical discussion of this paper, we will
assume that R(.) isstrictly concavein hin the
neighbourhood of the optimal harvest level
and that a unique optimum exists.

Thebiological growth functionand the price

function are two important components that
deserve special attention.
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The deterministic solution

Let us derive some important results from
the continuous deterministic problem as a
reference solution. Aneconomic background
and interpretation of the famous formulae of
optimal control theory will be contained
below.

In(4), we find the Hamiltonian (Hamiltonian
function), H, of the optimization problem in
(2) and (3). Detailed presentations of this
equation are found in Clark (1976) and in
other texts. H contains two components, the
integrand of (2) and theright hand side of (3)
multiplied by lambda, the dual variable of
the problem, which may be interpreted as
the shadow priceoftheresource. The harvest,
the stock and the shadow price are all
functions of time.

H=e TtR(h) +A (F(x) -h) 4)

The optimization idea, which conceptually
is similar to traditional Lagrangian
optimization, is to derive the harvest level
which maximizes H. In optimum, the first
order derivative found in (5), should have
the value zero.

g—g=e"t}e'(h>—l=o (5)
We may now consider the similarity with
Lagrange function optimization more in
detail: The derivative (5), which is equal to
zero, contains two components: The present
value of the marginal (net) revenue of
harvesting minus the marginal resource
value, the shadow price. Via this equation,
we instantly get one function of the shadow
price (6).

A=e~**R'(h) (6}

Note that (6) could be obtained directly from
the economic insight that the marginal net
revenue should be equal to the marginal cost
of harvesting, which is equal to the shadow
price of the resource. Equation (6) reveals
that, in case harvesting is constant over time
and the (net) revenue function is identical
over time, then the shadow price (the value
of a marginal unit of the resource) is a
monotonically decreasing function of time
as long as r > 0. This is reasonable from an
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economic point of view. We may use (6) to
derive the more general result (7):

g_ﬁ=e-r:(_rgf(h) +R”(h) h) @)

In (7) we find that not only the rate of interest
and time, but also the harvest path and the
first two derivatives of the revenue function
affect the time path of the shadow price.

In (8), the “adjoint equation” of optimal
control theory is stated. (The shadow price is
also sometimes denoted theadjoint variable.)
This equation must be satisfied along the
optimal path. Below, an economic interpre-
tation of this equation will be given via the
help of a two period example. (Disciplin
specific interpretations of these equations
can be found also in mechanics.)

ai oH (8)

The adjoint equation and its economical
interpretation

Imagine a two period harvest problem (9)
and (10). We initially have X units of the
resource available. We shall determine the
optimal harvest vector x.

In period 0, the net price is P minus the price
change, and in period 1, the price is P. We
implicitly assume that the prices are real,
discounted prices. In period 0, we may
harvest one part of X and save one part for
the future period 1. Theamount that we have
available for harvesting in period 1 is equal
to the amount that we did not harvest in
period 0 plus the amount of growth that the
saved resource gave. This is found in (10).

max m=(P-AP)x,+Px, )

S.t. Xx.=(X-X,) +F(X-X,) (10)
In fact, we may replace the two dimensional
constrained optimization problem (9) and
(10) by a one dimensional unconstrained

problem (11).

max ® (x,) =(P-AP) x,+P((X-x,) +F(X-x,))
(1



The first order optimum condition of (11) is
(12).

—& = [P-AP] + P[-1-F/(X-x,)] = 0(12)

Denote the saved resource X (underlined)
and rewrite (12) as (13).
-ApP-PF'(X) =0 (13)

From (13) weinstantly get(14). Thisequation
may be interpreted the following way:

When we, in period 0, have selected the
optimallevel of the stock saved for the future,
this must mean that the marginal unit of
harvesting in period O is exactly as profitable
as the marginal unit of stock saved for
harvestingin period 1. Let usassume that we
can harvest one (marginal) cubic metre now,
in period 0. Then we instantly get (P - price
change) crowns more. We can also save the
cubic metre and get the cubic metre plus
growth in the next period. The profitability
of doing this must be identical if we use the
marginal resource unit optimally over time.
Hence, if the marginal relative growth, F'(x),
is positive, then the marginal relative net
price change (discounted) must be negative.
Pl =-AF (14)
Another way to come to equation (14), using
economic logic, is the following: Consider
the marginal unit of the resource in a
continuous time problem. Theresource level
is X(t). We want to harvest this over time in
such a way that the real value of it, taking
growth and real price changes into account,
does not change over time. The value of the
marginal unit, x, at time t is P(t)x(t).

The time derivative of the value is P'x + Px'.
This time derivative must be equal to zero. If
we divide the expression by Px, which must
be greater than zero, we find that P’ /P + x'/
x must be equal to zero. Since x’/x is the
relative growth of themarginal resource unit,
we may replace it by F'(X). Hence, we may
write P’/P + F'(X) = 0. This equation is the
same as (14) if we go from continuous to
discrete time, replacing time derivatives by
time differences, and replace X by the
corresponding discrete time variable, the

underlined X.

Equation (14) may instantly be rewritten as
(15).

-PF'(X) =AP (15)
If we replace the prices in (15) by shadow
prices, we get (16).

-AF'(X) =AA (16)
Now, we consider time periods that become
shorterand shorter. In thelimit, timebecomes
continuous, and we can replace the
differences by derivatives. Then, we have

found the adjoint equationof optimal control
theory (17).

_OH_0A
o9x ot

Note in particular that ways to find the
important equations needed to solve the
continous time optimal harvest control pro-
blem, (6) and (17), have now been reported
that are based on economic logic only. The
equations will be used to derive general and
particular results in the following sections.

(17)

Qualitative results from the deterministic
model
Now, we shall make use of the adjoint
equation and derive some general results
from the deterministic continuous model.
The derivative in (18) is derived from (4).
OH _4 o :
ﬁ—“' () (18)
The adjoint equation (17), (6) and (7), give us
(19).

—e-TtR!(h) F!(x) =e~*t[-rR'(h) +R" (h) h]
(19)

(19) may be rewritten as (20).

-R'(h) F'(x) =-zR'(h) +R"(R) K (20)
From (20), we get (21). We find that the time
derivative of the optimal harvest level is an
explicit function of the difference between
the rate of interest and the marginal growth
rate.
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The ratio of the first and second order
derivatives of the net revenue function is
strictly negative if we assume a strictly
concave function with positive marginal
revenue.

R'(h)

h=[r-Fl(x)] ==
o X)]R”(h}

(21)
Mostly, there is a stock level which makes
(21) take the value zero. This stock level is
called an equilibrium stock level. When the
rateof interestis equal to the marginal relative
growth, we have reached the equilibrium.

Ifthestock level islower than the equilibrium
(the marginal relative growth is higher than
therateofinterest), then harvesting isinitially
low (lower than the growth) and increases
over time as the stock increases to the
equilibrium.

Ifthestocklevelishigher than theequilibrium
(the marginal relative growth is lower than
therateofinterest), then harvesting isinitially
high (higher than the growth) and decreases
over time as the stock decreases to the
equilibrium.

IfR(.) becomes morelinear, R”(.)approaches
zero. Then the changes in the harvest level
over time become more dramatic since the
absolute value of the denominator in the
RHS of (21) decreases. In the limit, we ap-
proach the famous bang-bang policy
mentioned later in this paper.

General properties and functions

Now, we turn to the (stochastic) discrete
time model. In order not to mix the concepts
within the paper, the stock in the discrete
time model at time t is denoted by Q(t).
Growth in this model is denoted by G. We
assume that growth from period t until pe-
riod t+1 is a density (stock) dependent
Markov function, G = G(Q(t)). Hence, in the
absence of harvesting, the forward stock
difference is:

G(t) = G(Q(t)) = AQ(t) = O(t+1)
- o(c) (22)

The harvest level at time t, h(t), is a function
of the price level and the stock level in the
same time period. h(t) = h(P(t),Q(t)). In the
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general case, when harvesting may take
strictly positive values, we have:

AQ(t) = G(Q(t)) - h(P(L),0(t)) (23)
Price, P, is assumed to be an exogenous
stochastic Markov process. In the general
case, we have:
AP(t)=AP(P(t),e(t)) (24)

where € is a series of random “errors” with
some distribution and autocorrelation zero.

In the more restricted first order
autoregressive, AR1, case, we have:
P(t+1) = a + PP(L) + e(L) (25)

We assume that e is a series of normally
distributed errors with mean zero and
autocorrelation zero. Ifa>0and 0 < 8 < 1,
which we assume, then the process P is
stationary with mean p = a/(1-8). It can be
shown that the autocorrelation function of P
declines geometrically in this case. The
autocorrelation function approaches zero
from above as the number of lags increases
from zero. Hence, when we work with a time
scale where each time step is sufficiently
large, we may use the approximation:

Pit) =p +g(t) (26)
The underlined epsilons denote a series of
normally distributed errors with mean zero,
standard deviation ¢ and autocorrelation
zero. This kind of price process will be
assumed in the numerical calculations of
this paper. Of course, more complicated
process assumptions could be made. This
would however not serve the purpose of the
study. It would make the calculations less
easy to follow and require moreassumptions.
Furthermore, morecomplicated assumptions
are only interesting if thereis some empirical
data that supports them. The same price
process assumptions are also used by
Lohmander (1983), (1987), (1988b), Haight
(1990), Braze and Mendelsohn (1990) and
others.

More specific growth assumptions

As a growth function, we start by, in the lack
of more detailed relevant understanding,
usingadiscreteapproximation of thelogistic



function. The logistic function is usually
presented in continuous time. When X(t) is
the stock level and there is no harvesting:

(27)

6 and K denote the “intrinsic growth rate”
and the “carrying capacity”, respectively.
For a detailed presentation of this function
and its use, compare Clark (1976).
Introducing a new constant,I’, (27) may be
written as (28).

& =0x -Ix? (28)
We have to find a quadratic function with
two parameters. We may determine this
equation of growth using two assumptions:

- The maximum growth per hectare occurs
when the stand density is Q° ( = 200) cubic
metres per hectare.

- The maximum sustainable growth is 4
cubic metres per hectare and year. The maxi-
mum sustainable growth per hectareduring
a five year period is denoted G°.

Now we go back to our discrete approxi-
mation of the logistic function and the pro-
blem relevant variables. We add a density
independent small “disturbance”, Q,
reflecting the fact that growth will not stop
for ever if all of the stock is harvested. If Q =
0 at a particular point in time, sceds and
plants from neighbour stands will finally
invade the area. Furthermore, we have the
option of artificial regeneration.
G=0Q +8p -Ip? (29)
The first order condition of growth
maximizationis 0 -2 I'Q=0, or, if weusec the
more explicit notation:
2
8(1-20) =0 (30)
Assuming that 6 > 0, which 1s quite
reasonable, we find that K = 2Q°. Note in
particular that Q does not influence the
relationship between the carrying capacity
and the growth maximizing stock level.
Making use of this finding, we have the

following equation:
- ﬁ wy 2
* = + = — )
G'=0Q + 60 e (Q (31)
which can be simplified as
¢=0a.+ 20 (32)

Now, we may select a combination of  and
Q thatisconsistentwith our “empirical facts”
Q° and G°. Since the disturbance Q = 0, we
have:

G
o
Now, we remember that Q° = 200 (cubic
metres per hectare) and that the growth is 4
cubic metres per hectare and year. Each pe-
riod isassumed to represent five years, which
gives G® =20. The resulting parametersare K
=400 and 6 = 0.2.T = (6/K) = 0.0005. We
assume that the disturbance Q = 0.3. This
gives us the growth equation

=2

(33)

G=0.3 +0.20 - 0.0005Q%  (34)
We find that the maximum sustainable
growth, via this equation including the
disturbance, is 4.06 cubic metres per year
when the stand density is 200 cubic metres
per hectare. This is a satisfactory represen-
tation of our “empirical” assumptions.
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Figure 2.Stand density development without thinning
according to the growth function in Figure 1.

More specific price assumptions

Each time period (which represents five
years) wemake a new price observation. The
harvest decision in that period is based on
that information. The price is used asa short
notation for net price; price minus variable
harvest costs per cubic metre. We may also
assume that priceis the price per cubic metre
which the resource owner recieves from a
buyer who is responsible for the harvest.
There are empirical observations that sup-
port the assumption that the harvest cost per
cubic metre is not very sensitive to the stand
density. Compare Hagner (1990a), (1990b)
and (1992). Hence, we may regard price ( =
net price) as completely cxogenous. Of
course, in cases where there are strong
reasons to study the density cffects in
particular, special harvest coststudics should
be performed and the signifficant results
included in the analysis.
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The price is assumed to be normally
distributed with mean pand standard devia-
tion ¢ in cach period. The autocorrelation is
zero. In the numerical analysis, p = 100 and
o takes different values.

Since we assume that the decision maker
maximizes the expected present value of all
harvests now and in the future, thereisreally
no need to investigate the sensitivity of op-
timal harvesting to p in this problem. (The
expected present value is however an
increasing function of . It is proportional to
w as long as the relative standard deviation,
o /L, is held constant.) It can be shown that
changes in p leave the optimal harvest pro-
gram unchanged as long as the relative
standard deviation, o/, is held constant. The
effects of increasing standard deviation on
optimal harvesting that are found in the
numerical analysis are functions of changes
in the relative standard deviation, 6/p.
Hence, we may interpret the numerical
results more generally than it may seem at
first glance. For example, when ois given the
value 30 and p is 100 in the calculations, the
harvest consequences are relevant for every
problem in the class where the relative stan-
dard deviation takes the value 30%.

The adaptive harvest function
Onccandetermine the qualitative properties
of optimal adaptive harvest functions via
analytical stochastic dynamic optimization
in several general cases. This has been done
by Lohmander (1987) and (1988a). It is also
possible to use stochastic dynamic
programming with discrete stock state and
harvest control spaces in order to determine
optimal adaptive harvest functions
numerically. Then, however, the
dimensionality problem generally restricts
the resolution of the results strongly. Some
examples of discrete stochastic dynamic
optimal harvesting models are Lohmander
(1987) and (1990a).

[tis sometimes possible to handle continuous
stock and harvest controls, via polynomial
approximations of the objective function, in
the context of stochastic dynamic
programming. One example of this is
Lohmander (1990d).



In this paper, however, a completely diffe-
rent approach will be used: First the
functional form of the adaptive harvest
function will be discussed and determined.
Then, the parameters of the harvest function
are optimized. The objective function is
approximated via a large number of
stochastic simulations of the complete sys-
tem over a 300 year period.

The adaptive harvest function parameters
that optimize the objective function are
determined through the gradient method.
Here, the optimal step length is determined
via the robustbisection method. More details
concerning the principles of the optimization
methods is found in Ridde & Westergren
(1988). In all investigated cases, the solutions
have been found to converge to stationary
points, local optima. The initial parameter
guesses have notaffected the solutions. There
is no reason to believe that these optima are
not also global optima. The structure of the
problem is such that one unique optimum
should be expected evenif aformal analytical
proof of this is practically impossible or at
least extremely page consuming because of
the complexity of the model. Proofs of
uniqueness in slightly different models of a
similar type hasbeenreported by Lohmander
(1987) and (1988a).

Anintuitive discussion will herebe presented
which supports a particular kind of adaptive
harvestfunction. Fromdeterministicresource
economics, presented in for instance Clark
(1976), it is well known that the optimal
harvest policy can belong to qualitatively
different classes. If the objective function is
linear (which is the case if the net price is
exogenous), the optimal harvest policy is a
“bang-bang” policy. One should make the
resource approach the optimal stock as
rapidly as possible. Initially, if we start at
stocks that are lower than optimal, we will
experiencea period during which no harvest
takes place. When the optimal stock is
reached, on the other hand, the harvest will
be identical to the growth at that stock, a
constant, for ever.

If the objective function is strictly concave,
which is often implicitly assumed without
much concern in economic models, the ap-

proach to the equilibrium is more smooth,
fromabove or frombelow, depending on the
initial stock level. If, which is often highly
relevant in resource economics, there are
economies of scale (the objective function is
strictly convex), then pulse extraction of the
resource can often be shown to be optimal.
This means that harvesting is a periodic
activity and that the natural resource is
allowed to change stock level considerably
between the harvest sessions. In fact, with a
time and space scale, where each period is
sufficiently short and each unit area under
harvesting is sufficiently small, it is obvious
that pulse extraction is the only possible
alternative. The forest worker can not work
everywhere in the forest at the same time,
slowly and partly harvesting every tree. The
fisherman can not cover every part of the
ocean simultaneously and always with his
efforts. Of course, these observations are
results of economies of scale. If the time
periods are longer and the spatial resolution
islower, on the other hand, itis likely that the
harvest activity will look continuous and
smooth.

What is common in the above findings,
however, is that the stock should sooner or
later beadjusted towards some optimal level
or at least to some interval. In other words,
the harvest level should be an increasing
function of the stock.

The deterministic resource models tell us
little about the effects of price changes on
harvesting. Some special assumptions have
however been made in the literature and the
results derived. Here, I will argue, with
theoretical support from other analytical
stochastic resource models, that optimal
harvesting should be an increasing function
of price as long as the price process is
stationary. Compare Lohmander (1987),
(1988a) and (1990a).

If price is stationary and if we observe that
the present price is higher than usual, we
should harvest more than usual, since the
expected price in the future is lower than
what we observe just now. On the other
hand, maybe we should harvest less than in
a deterministic situation even if the price is
higher than usual! The reason in this case is
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that we can wait many periods for sufficiently
high prices. We may want a price that is
much higher than the average in order to
find it economically interesting to harvest
(and take away later harvesting options)ina
particular time period.

In any case, we find that the optimal harvest
level is an increasing function of price in the
same period.

Let us suggest a functional form of U, the
relative harvest level, which is simple and
robust and makes it possible to estimate the
suggested effects.

U=a+bP+c0 (35)
(More precisely, U follows equation (35) as
long as 0 < U < 1. U is bounded from below
and from above. In the following discussion,
this assumption is implicit in order to save
space.) Pis priceand Qis stock level. a,band
c are parameters such thata<0,0<b,0<c
The harvest level is thus

hit) = Ult)Q(t) = ap(t) + bP(t)Q(¢t)
+ clp(t)]? (36)

Why is the relative harvest level U and not
the harvestlevel, h, selected tobealinear and
increasing function of Pand Q? Thisis partly
a compromise. First, it makes it possible to
determine the synergy effects of P and Q
since “"bPQ” appears in the harvest function
(36).Second, it makesit possible todetermine
ifa “smooth” approach to some more or less
stable equilibrium should be tried via the
quadratic term ¢ in the expression of h.
Third, we can be convinced that harvesting
will stay feasible, h < Q. Finally, the function
is robust and simple. If there are more
parameters in the function, it is possible that
the solution to the parameter optimization
problem may not converge or may need a
very large number of experimentsinorder to
give reliable parameter estimates.

Optimization of the adaptive harvest
function parameters

When the parametersof theadaptiverelative
harvest volume function should be
optimized, we may experience numerical
problemsif the original formisused, namely:
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U=a+ bP+cQ (37)
The reason is that we need to calculate
approximative valuesof the firstorder partial
derivatives of U with respect to a, b and ¢
within the gradient method. These
derivatives are used when the optimal
directions of parameter combination changes
are determined.

When we change one of the parameters a, b
or c, this generally affects the first order
derivatives of U with respect to the other
parameters strongly in this equation.

One common way to take the second order
derivatives into consideration, improving
the speed of convergence, is the well known
Newton-Raphson method. This, however,
only works well if the objective function is
strictly concave everywhere. In this
application, in particular since we can only
obtain approximative numerical values of
the functionand the derivatives, the Newton-
Raphsonmethod does not work well. Because
of the approximation errors present already
in the estimations of U, it is clear that first,
and in particular second, order derivative
approximations, will be based on several
errors. In cases where the true objective
function is strictly concave but almost linear
in some regions, which is typical in these
optimization problems, the approximation
errors can make the local estimations of the
partial second order derivatives get the
Wrong signs.

Hence, the function may seem convex and
the solution diverges from the true optimum
with, for instance, the Newton-Raphson
method, or other methods based on second
orderderivative estimations. For thisreason,
a gradient method based solely on the first
order derivative approximations is used in
this problem. This method works well as
long as the objective function is quasi-
concave. Hence, the applicability of the ap-
proach covers a quite general class of
problems: A strictly concave objective
function is no longer necessary.

In this particular kind of problem, oneobtains
much faster convergence to the optimal pa-



rameter solution if some other parameters
(a°, b°, c°) are used instead of (a, b, ¢) in the
algorithm. The new parameters (a°, b°, ¢°)
are then transformed back to the old
parameters (a, b, ). It is important to define
the new parameters in such a way that the
mixed second order derivatives of the
objective function with respect to these
parameters are close to zero and that the old
parameters canuniquely be determined from
the new parameters. In other words, the new
parameters should express relations thatare
not likely to affect each other very much.

What such new parametersshould weselect?
Hereis the list of new parameters used in the
optimizations:

- Parameter (a®) is the pricelevel which makes
U=a+bP +cQ =0 when Q = 100. In other
words, a° is the lowest price that makes
harvesting profitable if the stock level is 100
cubic metres per hectare.

- Parameter (b°) is slope of the "“iso relative
harvest line”,8P/8Q, at the point (Q, P) =
(100, a°).

- Parameter (c°) is the derivative of U, the
relative harvest function, with respect to
price, at stock and price combinations (Q, P)
where optimal harvesting is strictly positive.

Scaling problemsand other numerical issues
exist that are not discussed here. In the
specially constructed computer program,
these questions are discussed within the
algorithm in the form of remarks.

Finally, when the parameters(a®,b°,c®) have
been optimized, the old parameters (a, b, ¢)
are determined from three equations:

a =c‘(100b"*-a") (38)
b= " (39)
c = -b’c* (40)

(Note that changes in parameter c® affect the
values of a,b and c simultaneously. Changes
in b° affect the values of a and c.) It should be
stressed that convergence to local optima
(that almost certainly are global) was

obtained with this method in every tested
case.

The parameter optimizations were
performed for all combinations of the real
rates of interest 0%, 1%, 2%, 3%, 4% and the
relative standard deviations in the price
process 5%, 10%, 15%, 20%, 25%, 30%, 40%,
50%. Hence, totally 40 parameter set
optimizations where made.

Next, a multiple ordinary least squares reg-
ression analysis, OLS, was made of the new
parameters as functions of the real rate of
interest and the relative standard deviation
of price. The following results were found:

a*=115.5 - 18.88r + 1.271s 41)

b* = - 0.2303 - 0.002999s (42)

c* = 0.01397 + 0.00384r - 0.00015445
(43)

rand sdenotereal rate of interestand relative
price standard deviation respectively. The
regression calculations gave the result that
all coefficients of the estimated equations
were statistically signifficant at the 95%
confidence level. We should be aware that
the residuals should not be expected to be
normally distributed because of
nonlinearities in the model generating the
data. Hence, we should not take the
signifficance information too seriously.
Nevertheless, when the partial derivatives
of the parameters with respect to the rate of
interestand to therelativestandard deviation
are studied, we find reasonable economic
results:

- When the rate of interest increases, the
lowest price that motivates harvesting (when
Q = 100) decreases. This decrease is about 19
percent of the mean price (18.88 SEK) per
unit (%) of the rate of interest. This finding
is consistent with traditional resource eco-
nomics: When the rate of interest increases,
we should decrease the stock level.

- When the relative standard deviation of
the price process increases, the lowest price
that motivates harvesting (when Q=100)
increases. When the relative standard devia-

207



tion increases with 1 unit (1 %), then this
price increases by 1.3 % of the mean price
(1.271 SEK). This is consistent with the
literature on stochastic resource economics
under the influence of stationary price
processes (Compare Lohmander(1987)and
(1988a).) Note in particular that this result,
also reveals that the expected value of the
stock increases as the standard deviation of
the price process increases. Thisis why we
should notacceptto harvestata particular
price in the more risky ‘environment. We
should save the resource longer and let it
grow toa higher stock level, waiting foreven
better future options!

*bﬁo f'
't oo '5..?
0.‘:#‘,% ‘ ‘
0"
0 . t‘, q'.
t * 0.:.
.__ .h. 3
- ...‘.'.t. .. ..

c.r=3%,5=5

- When the relative standard deviation of
price increases, the slope of the “iso relative
harvest level” line becomes a little steeper.
(The derivative = - 0.003)

-The derivative of optimalrelative harvesting
with respect to the rate of interest is positive
and thederivative with respectto therelative
price standard deviation is negative. Again,
this is understandable: When the rate of
interest increases, future profits become less
essential. Hence, present harvesting should
be more sensitive to the present price when
the rate of interest increases. When the price
standard deviationincreases, very high prices
become more probable. Then harvesting
should be less price sensitive than otherwise.
We should not harvest much if the price is
not very high.
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Figure 3. Optimal adaptive harvest functions for different combinations of the rate of interest and the standard

deviation of (net) price.
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Results

Below, the results from the analytical
deterministic model will be discussed and
compared to the results from the stochastic
numerical model. Note in particular that the
average optimal stock level derived from the
stochasticoptimization modelis very similar
to the optimal stock level in equilibrium,
derived from the deterministic model. The
degrees of stock and harvest variation in the
stochastic model are however very high.
Sometimes, the optimal “thinning” is to
harvestall of the treesatonce. Hence, we find
thatthereis notalwaysa stiffborder between
“pulse” and “continuous” harvesting in
stochastic adaptive economic resource
problems.

The deterministic equilibrium stock level
When we use one year long time periods, the
empirical assumptions give us the growth
equation

F(x) = 0.06 + 0.04x - 0.0001x% (44)

The equilibrium stock level is determined
by the condition that harvesting is constant,
dh
Pl (45)

This is fullfilled when

[F/(x*)-r] = 0.04 - 0.0002x"* - r

=0
From this equation, we may determine the
equilibrium stock from the simple condition:

(46)

x" = 200 - 5000r (47)
Hence, we know that the equilibrium stock
is 200 cubic metres per hectare when the rate
of interest is 0. The equilibrium stock
decreases with 50 cubic metres when the rate
of interest increases with one percent.

Table 1. The equilibrium stock as a function of the rate
of interest in the deterministic case

rate of interest  equilibrium stock

0 200
1 150
2 100
3 50
4 0

Optimal adaptive harvesting in the
stochastic case

Theresults presented in this sectionarebased
ondifferentassumptions concerning therate
of interestand therelativestandard deviation
of the net price. The optimized adaptive
harvesting function is in each case
determined via the equations reported in the
earlier sections. Inevery case, the initial stock
level is 50 cubic metres per hectare.

Figure 4. to Figure 9. include complete
descriptions of the results obtained in the
different cases. The quasi-random numbers
used in the different cases are the same.
Below each graph, the assumptions are
printed. (r, S, SA, PV) denote (real rate of
interest, relative standard deviation in the
price process, “assumed” relative standard
deviation in the price process, present value.)
The “assumed” relative standard deviation
is the value used to derive the optimal control
function. Clearly, we can not always be sure
that the controller knows the true value of
the future standard deviation. In theanalysis
of this paper, we willhoweveralwaysassume
that the controller makes the correct
variability assumption. In Figure4.,5.and 6.,
we find thatthe average stock level decreases
dramatically with the rate of interest. This
effect is almost identical to the effect which
we found in Table 1. The present value is
strongly negatively affected by the real rate
of interest. Note that clear cuts take place
also with this “thinning” model.

Figure 7. should be compared to Figure 4. In
Figure 7., harvesting is constrained and in
Figure 4. harvesting takes placeaccording to
the adaptive functionand therevealed prices.
The constraint implies that: 1/ - Harvesting
takes place only if the stock level is above 150
cubic metres per hectare. 2/ - Then, the
harvest level is such that the stock level after
harvest is reduced to the value 150. We note
that, even if the average stock level is almost
the same as in Figure 4., the present value is
much lower. The present value per hectareis
reduced from SEK 26 263 to SEK 20029 by the
harvest constraint.

Figure 8. is based on a much lower relative

price variation than Figure 4. We note that
price variation and adaptive behaviour is
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profitable: The present value in Figure 8. is 300

SEK 20 036. The average stock level is still X
close to 150 cubic metres per hectare. % 200
S M B
Figure 9. is the high net price variation case. Uy 100 // Lol V‘VAL/A
Since therelative net price variation is higher
than the average in areas where the variable 0

harvestingand transportation costsarehigh,
. this figure represents such regions. The ge-

neral result, that adaptive behaviour in the Ly 9 2
presence of high price variationis profitable, & 7 W T %
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Figure 5.Stock level, net price and harvest level. Me-
dium rate of interest and medium price variation
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Figure 7. Stock level, net price and harvest level. Low
rateof interest and medium price variation. Constrained
and constant harvesting level.
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Figure 9. Stock level, net price and harvest level. Low
rate of interest and high price variation.

In Table 2., the expected results from a large
number of “stochastic price sequences” with
adaptive harvesting are reported. The
expected present value decreases rapidly
with the rate of interest and increases much
with the relative standard deviation in the
price process. The standard deviations of the
present values within each parameter group
are surprisingly low. Hence, it is not very
critical that a particular stochastic price
sequenceappears. Theadaptive harvests take
advantage of the good years when they
appear and the forest volume can be
distributed over time in an appropriate
manner.
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Table 2. The expected present value per hectare as a
function of the rate of interest (Int.) and the relative
standard deviation in the price process. Each figure is
calculated from 100 stochastic simulations over 300
years. The figures in the table are the average present
value of the 100 simulations and the standard devia-
tion (in brackets)

Relative standard deviation

Int. in the price process

0% . 30%
1% 21294 (0)  28726(1656)
2% 6 960 (0) 11 011 (583)
3% 4 529 (0) 6 490 (633)

Conclusions and suggestions for the future
The analysis presented in this paper has
shown that it is quite possible to take the fact
that future prices are not yet known into
account in the planning of forest thinnings
(and clear cuts). The primary concern should
be to optimize an adaptive harvest function.
The harvest level should not be determined
before we have observed the net price and
the stock level. We can expect to gain
considerable economic values fromadaptive
harvesting this way.
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