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— a tool for adaptive economic forest management

Abstract

A numerical method is suggested that can solve typical adaptive problems in the
intertemporal management of forests and other natural resources. Time is treated as a
discrete stage variable and the state space is continuous and multidimensional.
Continuous approximations are made of the objective function via exactly determined
multidimensional polynomials derived from different sets of objective function
observations. A two dimensional third order example is discussed in detail. The initial
set of observation sample coordinates is selected in a way that gives a high degree of
state space representation and makes the coefficient matrix of the approximation
equation system nonsingular. For each observation set, the coordinates of the
individual observations are systematically changed in a way that keeps also the
following equation system matrixes nonsingular. The standard deviations of the
optimal decisions and the objective function values are determined and used to
investigate the reliability of the derived solutions and the relevance and stability of the
multidimensional polynomial objective function approximations.
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1. The need for adaptive decisions and optimization in an unpredictable world

This paper presents an adaptive optimization method which easily can be applied to
typical economic harvest optimization problems in resource management. The method
is discussed in connection to general problems of applied stochastic dynamic
programming and approximation. A dynamic harvest problem with stochastic price and
growth processes is analysed as an illustration. A computer program based on the
suggested method is included in the appendix.

"Adaptive economic forest management" is not only included in the title of this paper
but is also the name of a research project, ADECOFORM, at the Swedish University of
Agricultural Sciences. This paper contains ideas and methodological foundations that
find use within the ADECOFORM project and hopefully can be helpful also in other
contexts.

The most important differences between adaptive optimization and other forms of
optimization are the following: It is explicitly accepted that there are conditions in the
environment that can not be perfectly predicted. (Environment here includes
everything that is exogenous to the system which should be optimized). Furthermore,
it is explicitly accepted that decisions can take place over time and that later decisions
should be based on the best and latest information concerning the exogenous
conditions. At this point the reader may wonder why not everyone makes use of
adaptive optimization. Nevertheless, even though the ideas are simple and obvious, the
main part of forest modelling is today based on methods that are not taking the
principles of adaptive decision making and optimization into account. Of course, there
may be several reasons for this. Some possible reasons will be listed below;

— The tradition of long term planning in forestry is based on the assumption that long
term predictions of high precision are possible. Clearly, some phenomena, such as the
growth of forests, have in the past been possible to predict with high precision
(compared to other phenomena) over long periods of time. However, it is not obvious
that long term forest planning is an objective in itself. Since the forest wood resource is
one input among others in the production of sawn wood, pulp and paper, particle board
etc., it is obvious that the economically optimal decisions in the forests are affected by
the physical and economical conditions in the forest industry, the product markets and
the labour market. These conditions outside the forest have never been possible to
predict very well over long horizons. Some observations of this are:



— The labour productivity has increased very much during the latest decades, at least
in swedish forestry. Hence, one can not argue that a constant long term harvest level
will keep the level of employment on a constant level.

— The roundwood prices have varied very much over time. Hence, one can not argue
that a long term constant harvest level is the most profitable or even the economically
most "constant" or "stable" solution.

— The oil prices show considerable variation over time. Hence, since wood can also be
used as a source of energy, the optimal use of the forest resource is most likely a
function of the oil price level. Furthermore, since the forest industry is an energy
consumer, the optimal solution to the resource allocation problem is far from trivial.

— The changes in the environmental conditions during the latest years have gained
much attention and large projects are investigating the effects on the forests. Clearly,
not even the forest growth, which earlier was assumed to be perfectly predictable, can
motivate the use of nonadaptive optimization models.

Adaptive optimization gives us the opportunity to deal with a relevant stochastic

multi stage description of the real world decision problems. The approach is more
difficult than traditional deterministic optimization. The method presented in this
paper hopefully simplifies the transition from traditional planning methods to the
adaptive approach.

The adaptive optimizer will constantly follow the development of the exogenous state
(the price level, the state of the natural resource, the environment etc.) and use the
latest information in the decision process. This does not mean that the adaptive
approach gives the same optimal solution as a traditional long term plan which is
updated when new information appears. The adaptive approach also takes future
options to adjust the decisions into account; The future level of flexibility is explicitly
taken into consideration, since a flexible future situation increases the expected value
function, the objective of optimization.

Let us turn away from the irrelevant deterministic modelling of yesterday and apply
the adaptive methods of the future !



2. The optimization problem and numerical issues

The economic stochastic dynamic harvest optimization problem is presented in (1).

m%x¢t(Ht; Qt’ Pt) (1)
t
B0 Htth

The objective function ¢,(.) is determined via backward recursion. Let T denote the
final period, the "horizon", in the problem. ¢t, in an arbitrary period such that
0 <t < T, can be expressed as:

T, denotes the present value of the profit from harvest Ht in period t and W 41 is the
expected present value (in the sence of Bellman (1)) of the profits in future periods
{41182 function of the harvest level and the
state before harvest in period t. The most general functional form of this relation is

conditional on optimal future decisions. W

expressed in the equation. W,  , is expressed in more detail in (4).
¢ may be defined as:

¢ = Tp(Hp;QpiPrp) (3)
In every period t such that 0 <t < T, we have:

* *
Wi (BpQuP ) = 114y (B 15Qu Py ) Q1 Py [HQpPy) dQy dP

(4)

¢* and H* denote optimal objective function value and optimal harvest decision
respectively. f(.|.) is the two dimensional probability density function of the initial
state in period t+1 conditional on the initial state and decision in period t. f(.|.) is
derived from the stochastic price and growth processes, some of which may be
controlled, relevant to the specific application. An example will be discussed as an
illustration in this paper. Figure 1 shows an example of a discrete time continuous state
stochastic dynamic optimization problem.



The state space contains the two dimensions P and Q which are treated as continuous.
We let Q denote the size of the natural resource and P is the exogenous price. In period
{, the state can be any combination of P and Q. Let us assume that the state in period
t is A. Then, if no control, harvest, is undertaken in period t, the state will take some
position close to D in period t+1. The circles surrounding D denote the iso probability
density graphs of the transition function.

If we select to control the state in period t, a harvest, H, is undertaken that moves the
state to position B. If no restrictions are present, the harvest may move the system to
any position along the line between A and C. Of course, if a harvest is undertaken, this
also affects the probability distribution of the state in period t+1. In the graph, the
state will take some position close to E in the next period. Note in particular that the
shape of the probability density function surrounding E is different from the shape of
the function surrounding D. In this kind of application to resource modelling, this is a
typical result if the stochastic deviations of the growth process are stock size
dependent.

In order to optimize the control at time t of the system, the level of H, the ideal
method would be the following if no calculations were time and cost consuming:

For each possible initial state in period t and level of the control H, we calculate the
sum of the present value of the instant economic profit at time t as a function of H and
the expected value of all future profits conditional on the control level H. The optimal
objective value function in period t is determined this way.

The expected values of all future profits are derived via the transition probability
distributions, one distribution for each control level H. The optimal objective value
function in period t+1 is known when the decision is optimized in period t. The
decisions and objective function in every period in the problem are functions of the
objective functions in the following periods.



Some practical problems that instantly appear if not very restrictive assumptions are
placed on the problem are the following:

a. We can not investigate every possible combination of the state variables P
and Q if these are treated as continuous variables since the number is
infinite.

b. We can not investigate every possible level of the control, H, for each
combination of P and Q, even if the number of P and Q observations is
finite. The number of calculations would be infinite anyway.

One simple way to overcome the problems a. and b. is to introduce a discrete and
bounded state space, a discrete and bounded control decision and a discrete transition
probability matrix. This has also been done by for instance Lohmander (8). Some of the
more severe problems with this approach are the following:

c¢. The number of calculations increases very rapidly when the number of possible state
levels for each dimension increases and in particular when the number of state space
dimensions increases.

d. The size of the required internal computer memory increases very rapidly with the
number of possible state levels and dimensions.

e. Problems often appear "close to the bounds" of the state space because transition
probability functions based on discretized versions of common continuous probability
density functions (such as the normal distribution) usually give transitions to positions
outside the bounds with positive probability. This makes it necessary to modify the
assumptions concerning the stochastic behaviour of the system close to the "artificial"
bounds. Hence, the solution of the optimization may be of little relevance to the real
world problem close to the state space bounds. Furthermore, when the number of time
periods is high and the investigated processes are nonstationary, the "bound effects”
discussed may severely affect the derived optimal solution also in parts of the state
space that are far away from the bounds. Nevertheless, when the processes are in fact
stationary and the number of dimensions is small, models with discrete state space may
work well.

In this paper, a compromize will be made, that may give desireable properties to the
optimization model in particular contexts to be discussed.



The basic approach used in the model is the following:

f. The objective value function, the expected present value of instant and future profits
conditional on optimal controls, is approximated by a multidimensional polynomial of
relatively low order in every time period. Hence, many of the problems associated with
a discrete state space can be avoided. Furthermore, the number of observations needed
in order to determine the approximating polynomial increases rather slowly with the
number of state space dimensions.

g. The transition probability density function is approximated by a multidimensional
discrete probability density function.

h. The control, harvest, level is optimized via a selection of discrete alternatives. This
makes it possible to use nonconcave profit functions. However, if the properties of the
profit function are known, and it is known that the optimal control is unique, then the
approach can easily be modified. The control level could for instance be optimized via
the Newton—Raphson method applied to an estimate of the derivative of the objective
function with respect to the control. Linear or nonlinear programing could also be used
in subroutines associated with each control level. Compare Lohmander (11)

3. Determination of the multidimensional approximating polynomial

The multidimensional polynomial approximation of the objective function can of course
be made in different ways. One well known approach is to use the ordinary least
squares method. Then the sum of the squares of the deviations from the estimated
polynomial is minimized. If specific assumptions concerning the distribution of the
residuals etc. are met, it is well known that detailed and sometimes useful statistical
information can be obtained concerning the distribution of the errors associated with
the coefficients and the predictions of the estimated polynomial. The standard
assumptions in regression analysis include normally distributed residuals without
heteroscedasticity. In the approximation problems under discussion in this paper, such
assumptions do generally not hold.



Within the optimization program, a function which is approximated by the polynomial
typically has the following properties:

a. The function is generally not several times continuously differentiable.
Frequently the function is several times differentiable in some regions and kinked or
linear in other regions. An observation made via discrete state space models is that
these problems are worse in the time periods close to the time horizon, the final period
of consideration in the optimization. The objective function has been observed to
become "more smooth" as the time index decreases. This is of course an effect of
positive probabilities of transitions to different states in later periods.

b. The observations made of the function to be approximated do not have
measurement errors that can be assumed to be normally distributed. Within the
algorithm, the function values are determined exactly. Maybe there are scme errors
because of numerical problems in the derivations. These can however not be assumed to
be normally distributed in the general case.

Figure 7. illustrates how a simplified one dimensional version of the objective function
(a cc;ncave curve) may be approximated by "polynomials"”, linear functions, of too low
order. Clearly, one should try at least a second order polynomial in the illustration in
order to capture the shape of the true function, the curve. However, in real world
applications, the true shape of the function is not known. Maybe the true function is a
polynomial of order 4 in some regions and linear in other regions. Then, the order of the
approximating polynomial must be determined without this information.

Let us turn to Figure 8 Assume that observaticns (calculations) are made of the
objective function (Y) in the points X, X, Xpand X, The Y calculations will give
the results Yl, Y2, '1'3 and Y, respectively. Ordinary least squares, OLS, minimization
of the sum of squares of the residuals via a linear function gives function C. An other
approach is to determine the linear equation that satisfies the observations in two
points, X 1 and X,. Then we obtain the function A. If we select the observations X2
and X, we end up with equation B. The graph shows that all three equations A, B and
C approximate the true function. All suggested linear functions give the correct
solution for two different X values. We know the X values that make the functions A
and B identical to the true function values but we do not know the X values that make
the function C correct. Hence, we know in what region we can expect the functions A
and B to be good approximations. This is a strong advantage of an exactly determined
polynomial compared to a polynomial determined via a least squares method.



Furthermore, the traditional assumption in regression analysis of identically distributed
residuals is clearly not satisfied. This is partly a consequence of the fact that the order
of the approximating polynomial is not the same as the order of the true function.
Hence, the "absolute prediction errors" are zero for two different X values for each
approximating function. The "absolute prediction errors" are (increasing) nonlinear
functions of the distances to these X values. Hence, we can not assume that the
standard deviation of the estimate, which is standard information from most regression
analysis software, can be used to determine the expected difference between the
approximating function C and the true function. The residuals are highly dependent on
the X values in a way which is generally nonlinear and unknown to the investigator.

One dangerous way to use different approximations of the function is the following:
If the two approximating equations A and B give the same function value for a
particular X value, one may get the impression that the error of the approximation is
zero for that X value. This is however completely wrong, which is shown in Figure 7.
When the X value is X., both A and B give the function value Y, which is a strong
underestimation of the true function value Y.

This section can be concluded the following way: When the sum of residual squares is
minimized, we do not necessarily obtain more useful polynomial approximations than
when the polynomials are exactly determined. Furthermore, exact polynomial
determination has the advantage over least squares solutions that the X values where
the polynomial is identical to the true function are exactly known. Finally, exact
determination of a polynomial is computationally less effort consuming than regression
analysis.

4. The multi dimensional pattern of objective function observation coordinates

Let us initially discuss a low order problem. Assume that we want to determine the
following two dimensional polynomial exactly:

Z(X,Y)=c¢; +c, X + cY + ¢, XY (5)

A possible pattern of objective function observation coordinates is suggested in Figure
10. (The dimensions X and Y have been given the application specific names Q and P
in Figure 10.)
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The function value will be observed (calculated) in 4 positions, namely:

(X, YI), (X, Yo), (X, Y,) and (X,, Y,). The corresponding function values are
denoted by Z,, Z, Zq and Z,.

The linear equation system which determines the polynomial becomes D¢ = Z, or more
explicitly:

[ 1 Xl YI XIYI ] 'cl [ Zl'
1 Xl Y2 ]lsil‘i:'2 Cq - 32 (®)
 § X2 Yl 3(2Y1 Cq - Z3
1 X2 Y2 XY, _(:4_ Z4

We have to show that the matrix D in the equation system is nonsingular. Compare
Chiang (2) page 110. We will investigate if | D| is different from zero. If this is the

case, then the solution of the system exists and will be ¢ = plz.

Laplace expansion of |D| along column 1 gives:

Xy Ty Ko By X ¥,
Dl= +()| X, Y, XYy | - (1) | X, Y XY, | +
Xy Yy X5¥, X, ¥y XY, (7)
X, Y, 57 e g g
)| X Yy X Yo | - () X) Yy XY,
Xg Yy X5¥5 Xy Y XY
It can be shown that |D| can be expressed as:
ID] = -4X,X,Y,Y, + 2X, X, Y, Y, + 2X;X,Y Y,
+ 2K X, Y Yy - XX Yo Yy - X X, YY) (8)
£ 2K Y, Yy - KX VoY ~ X, XY, Yy

If we rewrite the expression, we have:

|D|=-[x§-2xlxz+x§]*[Y§—2Y1Y2+Y§] (9)
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This can be simplified as:
D] == (X; - Xp)® (¥, - ¥,)? (10)
o 1 2 1 2

Hence, it is obvious that |D| < 0 for all X;» X9, Y, and Y, such that X, is different
from X,, and Y, is different from Y, The matrix D is nonsingular and an
approximating exactly determined polynomial will be found.

Now, we will turn to the general two dimensional second order polynomial. In order to
simplify notation, we still use Z as the function value.:

Z(X,Y) = ¢) + X + cgY + ¢,X2 + ¢ XY + c Y2 (11)

» We will need six observations in order to determine the six coefficients exactly. Let us
look at two very similar patterns of objective function observation coordinates. One
pattern will result in a solution and the other will not. Pattern A is shown in figure 11
and pattern B is found in figure 12. Again, we note that X and Y are used in this
general section but that Q replaces X and P replaces Y in the application oriented
graphs. It will be assumed that X,» X4 and X, are different from each other and that
Yl’ Y2 and YE also take different values.

Table 1.
Observation number Coordinates pattern A Coordinates pattern B
1 o8 & XY
2 (XQ, Yl) (X3, Ylj
3 (X3, Y) Ky %)
4 (%5 %5) (X5, ¥5)
5 (X2, Y2] (Xl, Y3)
6 {Xa, Yz) (K3, YE)

The determinants of the coefficient matrixes according to the patterns A and B become
|Dy | and |Dg| respectively:
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Calculations show that |DB| is different from zero. DEI exists and can be derived
analytically. Hence, the function value observation coordinates can be chosen according
to pattern B when we want to determine the general two dimensional second order
polynomial exactly. Pattern A, on the other hand, should not be used. |D Al is equal to

zero and D;I can not be found. Thus, even if the two patterns A and B look very
similar, pattern B must be selected because of these reasons. The general lesson seems
to be that we should avoid simple geometric patterns. Investigations of other simple
geometric patterns in two and three dimensions have resulted in the same conclusion.

The general two dimensional third order polynomial, which is used in the included
numerical optimization model, contains 10 coefficients. Hence, 10 function value
observation coordinates are needed. These 10 positions are plotted in Figure 2. Note
that the positions do not reveal a simple geometric pattern. Furthermore, the ambition
has been to select points that will give a high degree of state space representation
within the region selected in Figure 2. In Figure 3 a possible way to systematically
move the sample is shown. This method is used in the computer program and makes
sure that the pattern gives solutions to all estimated polynomials.
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The 10 selected coordinates in the initial sample are:

Table 2.

Observation Xl X2
1 1 1
2 9 5
3 790
4 99 95
5 32 25
6 88 44
7 a5 1
8 6 92
9 50 50
10 35 75

Maybe one should in the future optimize also the function value observation
coordinates ?

5. A numerical algorithm

A numerical algorithm which solves the stochastic dynamic programming problem of
this paper has been constructed and included in the numerical appendix. The computer
code contains remarks that sequentially explain the numerical method. In the presented
version, the model can handle a two dimensional continuous state space. The value
function approximation is based on general two dimensional third order polynomials
that are exactly determined through 10 observations. Clearly, through minor program
modifications, problems of higher dimensionality could be solved as long as the
approximation approach is relevant to the specific problem. In applications where the
true shape of the objective function can be expected to deviate much from a
polynomial, other approximation methods should of course be used.

The objective function is approximated by:

2 2

- 3
-+ C5XY - CGY + 071‘{

B ) 9 2
Z=c, +¢X +cgY + ¢ X + egX7Y + ¢ XY? + ch3

(14)
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6. Application to a natural resource control problem

6.1. Definition of the problem

The typical natural resource control problem that will be discussed as an application
contains two stochastic processes. The computer code included in the appendix is
constructed to deal with the process assumptions presented below. However, it could
easily be modified to treat Markov processes with other functional forms. The price
process, P, is a Markov process, exogenous to the decision maker. More specifically, it
is assumed to be a first order autoregressive process of the form:

P
P,.,=a+fP +e (15)

It is assumed that the stochastic component flt:_' has zero autocorrelation and is
normally distributed with mean 0 and standard deviation op- This process assumption
is based on empirical investigations and more details can be found in Lohmander (4)
and Lohmander (6).

The volume process, Q, is a controlled Markov process of the following form:

Q. p=(Q-H)* (1+ €D (16)

H, denotes harvest volume at time t and (Qt - H,) is the size of the resource remaining

after harvest in period t. (4 — 1) is the expected relative growth. e? is a stochastic
component with zero autocorrelation. It is normally distributed with mean zero and
standard deviation o. Note that the residuals of growth are heteroscedastic if the
resource volume Q ; 18 treated as the independent variable. This is a reasonable
assumption in many applications where growth is an increasing function of the initial

volume.

In this application, we will assume that the present value of the profit is:

= ¢ TP H, - xBY) (17)

*t
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Pth is the revenue and nH? is a nonlinear harvest cost function, where k > 0. Note
that the marginal harvest cost is an increasing function of the harvest level. This makes
7, strictly concave in H,. A convex profit function may imply that "pulse harvesting"
is the optimal intertemporal harvest pattern. Compare Clark(3), Lohmander(4), (6)
and (8). The specific parameter values used in P, Q and = only serve as illustrations
and are of little general interest. However, the reader may find them in the computer
code included in the appendix.

In the illustration, we will consider a five period problem. The sensitivity of the
optimal harvest decision in period t, Ht' will be investigated with respect to the price
state, the volume state and the standard deviations of the stochastic components in the
growth and price processes. The sensitivity of the optimal objective function value to
the model parameters will also be studied.

6.2. The results of the resource example

All of the specific numerical assumptions made in the problem may be found in the
computer program for adaptive optimization included in the numerical appendix. The
assumptions of particular interest to the following discussion of results are on the other
hand presented also in connection to the illustrating graphs.

The control of the system is the harvest level. The optimal harvest level and the
optimal objective function value are dependent on the time period, the volume state
and the price state. The computer program automatically presents a table of all of
these relations. The graphs included in this section only represent a fraction of the
totally available information. Figure 4 shows the optimal harvest level as a function of
the price and the volume states in period 1 in a five period problem. The price process
is assumed to be stochastic and the volume process is deterministic. It is found that the
optimal harvest level is an increasing function of the price state and the volume state.
These results seem reasonable from a general point of view. Since the price process is
stationary, it is better to harvest during a good price period than to wait for even
better prices since the price can be expected to approach the stationary equilibrium in
the future.
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There are two reasons why the optimal harvest volume should be an increasing function
of the resource stock:

— The profit function 7 is increasing (in the interesting interval) and strictly concave in
the harvest volume in every périod. Hence it is "reasonable" (it can be shown that it is
optimal in simple models of this kind), that more harvest quantity is distributed to
each period as the stock increases.

— The profit function 7 in the future periods is strictly concave in the future harvest
volumes. Hence, according to the Jensen inequality, the expected future profit is a
decreasing function of the risk in the future volume (and more or less conditional
harvest level) probability density function. The risk in the probability distribution
function of the future volume is an increasing function of the volume after harvest in
the initial period. Hence, one way to decrease the risk in the future (and hence to
increase the expected present value of the enterprise) is to decrease the amount of the
resource that is left for the future. Thus, we should increase the present harvest level as
the initial volume increases.

Figure 5 shows how the expected present value is affected by the price and volume
state in period 1 in a five period problem under the same conditions as those discussed
in connection to figure 4. The objective function is an increasing function in both
arguments. This should of course be expected since we get more and more profitable
harvest options as the price and volume increase. Figure 6 illustrates how different
assumptions concerning the stochastic components in the price and volume processes
affect the state dependent optimal control, the optimal harvest as a function of price.
The volume dimension is not shown in the graph since this would make the figure very
difficult to interpret. It is found that the optimal harvest level is a decreasing function
of the price variability and an increasing function of the volume variability. These
results are dependent on several problem specific assumptions discussed in more detail
in connection to the graph.
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7. Discussion

The resource management application introduced in this paper is of course only one
example of an infinite number of different applications. However, in this application, an
adaptive management strategy and an objective function approximation are easily
found. These have properties that seem reasonable in the specific application. Similar
solutions are typical to similar adaptive optimization problems when other analytical
or numerical methods are used. Compare the results reported in Lohmander (4), (5)
and (8). Note, however, that a complete comparision of different methods generally is
impossible. When a particular analytical or numerical method is used, the problem to
be solved most often has to be modified or restricted in some sence in order to be
solvable. For instance, when we use methods based on a discrete and bounded state
space, the continuous functions of the application discussed in this paper must be
restricted. Hence, we will never know if the solution obtained through the algorithm
suggested in this paper is "better” than a solution from a restricted and discrete version
of the problem. "Better" may here be defined with respect to similarity between the
adaptive strategy derived through the algorithm and the adaptive strategy which really
is optimal in the complete and in every sence unrestricted application. "Better" may
also be defined with respect to similarity between the optimal objective function value
and the optimal objective function value in the complete and in every sence
unrestricted application. The author hopes, that the suggested method will be tested in
a large number of resource management applications. Maybe it will be found that the
method is able to capture the most essential properties of the functions in some of the
applications. Then, the numerical algorithm is motivated. The complete and final
numerical method will never be found.
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Figure 1.

The stochastic dynamic optimization problem in period t. The state space is two
dimensional. Q denotes quantity (volume) of the natural resource and P is price.
Position A (one position of an infinite number of possibilities) happens to be the state
before control, harvest, in period t. Q can be controlled via the harvest level in period
t, H. Any level of H can be selected as long as the state after harvest, B, is found on
the line between A and C. There are two different economic consequences of H: (a) the
instant profit from H in period t and (b) the change in the expected present value of
future profits. (a) is determined via a one dimensional profit function or via
deterministic one period optimization and (b) is determined via the probability density
function of the state in period t+1 conditional on H (D, E and an infinite number of
similar probability density functions) and the state dependent optimal objective
function in period t+1.

. PERIOD t+1
® B
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PERIOD t
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Figure 2.
The initial sample of objective function observation coordinates when a general two

dimensional third order polynomial is determined. The illustrated sample coordinates
have the following properties:

(a) Different parts of the bounded state space ( 0 < Q < 100; 0 < P < 100) are
represented by observations. We may initially assume that the bounds are relevant to-
the application and that position (Q, P) = (50, 50) is close to the position where the
optimally controlled system has high probability density. If, on the other hand, it turns
out that the states of the controlled system have low probability density close to (50,
50), other bounds than 0 and 100 may be used. Ideally, the search for bounds should be
based on iteration within the complete optimization problem.

(b) The number of observations, 10, is needed in order to exactly determine the general
polynomial with 10 coefficients via 10 equations.

(c) The coefficient matrix of the equation system used in the polynomial determination
will be nonsingular and a solution can be found. Some sample coordinates in the
combination with some functional forms may imply singular coefficient matrixes.
Compare the Figures 10, 11 and 12.
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Figure 3.

The sample nr (N+1) of objective function observation coordinates is obtained through
equal shifts (dQ, dP) of the coordinates of all observations in sample nr (N). This way;
the important mathematical properties of the observation coordinates mentioned in
connection to figure 2 are true in all observation coordinate samples.

> 0

100 —
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Figure 4.
*
The optimal harvest level, H , in period 1 as a function of price, P, and volume, Q.

*
op = 30, 7Q = 0. H is an increasing function in both arguments.
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*
The objective function value conditional on optimal decisions, W , in period 1 as a
function of price, P, and volume, Q.

*
op = 30, Q= 0. W is an increasing function in both arguments.
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Figure 6.

*
The optimal harvest level, H , in period 1 as a function of price, P, and the standard
deviations of the stochastic components of the stochastic price and growth processes,

op and JQ‘

B R
1 0 0

2 30 0

3 0 30

The optimal harvest level, H*, is an increasing function of the price in all cases. H* isa
decreasing function of the price risk and an increasing function of the growth risk. The
reasons for this are dependent on the specific model assumptions used. The signs and
magnitudes of the the first, second and third order derivatives of the harvest profit
function and of the growth function are of importance here. More details can be found
in Lohmander (4), (5) and (8).
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Figure 7.

An illustration of a problem which is present when a function, curve, is approximated
by two polynomials of wrong (too low) order (linear functions). The observation
coordinates Xl and X3 are used to determine approximation A. Approximation B is
based on the observation coordinates X, and X,. The investigator may believe that the
selected degree (first degree) of the approximating polynomials is acceptable and that
the approximations are very close to the true function value Y5 for X = K5 since both
approximations give the same function value, Yﬁ. However, this is wrong. Y5 is not
equal to (or close to) Y. We only know that A gives the true function values in the
coordinates X, and X, and that B gives the true values in X, and X,,. The discussion
presented here is relevant also when high degree multidimensional polynomials are used
as approximations. In real world problems, we seldom know the correct degree of the
functions to be approximated.
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Figure 8.

The four observations Xl, X2, Xs and K4 are used to produce two exactly determined
approximations, A and B of the curve. The same observations are also used to produce
approximation C via regression analysis (the ordinary least squares method). Here,
some reasons are listed why C is not always better than A and B:

a. All suggested approximations imply deviations from the true function.

b. We know that A and B give exactly the true function values in two points each with
known coordinates. We do not know if, or where, the regression equation C, gives
exactly the true function values.

c. In the least squares method of regression analysis, the sum of squares of the residuals
is minimized by the regression equation. Within the stochastic dynamic optimization
problem, where the approximation is used, it is not always the case that the
minimization of the squares of the residuals is the best way of approximation. Maybe
one should minimize the sum of the absolute values of the residuals or the cubes of the
absolute values of the residuals ? Maybe, it is more important to have approximating
functions that represent the data in some specific part of the state space very well ?
This could be solved via local approximations according to A and B or weighted
regression analysis.
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Figure 9.

It is important to be aware that an exactly determined approximation of a curve
(linear approximations A and B in the illustration) is not a Taylor approximation.
Hence, in the illustration, even if the true function is locally approximately linear, a
linear approximation such as A or B will generally imply large deviations from the true
function values also close to one of the coordinates where the approximation holds
exactly. Compare this example: B holds exactly in X 4- Still, B is not a linear Taylor
approximation of the curve (B is not a tangent to the curve in (X4,Y 4).)_ Hence, for
X = Xs, the curve and B give very different function values, namely Y and Y. A
linear Taylor function would have been a locally better approximation. The linear
Taylor approximation would on the other hand have overestimated the function value
everywhere except at X 4 Furthermore, since not all problem relevant functions are
everywhere differentiable, the exactly determined polynomials represent a robust and
important approximation method.
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Figure 10.
The graph shows an observation coordinate pattern that may be used if the

approximating two dimensional polynomial should be of the form:

Z(Q,P) = ¢o + CQQ + cpP + cQPQP

It can be shown that the coefficient matrix of the equation system used in the
determination will be nonsingular and that a solution can be found as long as P, is
different from 13'2 and Ql is different from Qg. Compare the main text.
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Figure 11.
The graph shows an observation coordinate pattern that may not be used if the

approximating two dimensional polynomial should be of the form:

Z(QP) = ¢y + cqQ + cpP + cQQQQ + ¢qpQP + cppPP

It can be shown that the coefficient matrix of the equation system used in the
determination will be singular and that the equation system will not give a unique
solution. Compare figure 12.




Figure 12.

31

This observation coordinate pattern may be used if the approximating two dimensional
polynomial should be of the same form as presented in connection to figure 11.

It can be shown that the coefficient matrix of the equation system used in the
determination will be nonsingular and that the equation system will give a unique

solution.
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in the shape of the computer output list.

This appendix contains the computer code and an illustrat

of which is included
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Here the computer output is shown:

tEE 2SS ZESEEEEEEERS S22 EEE RS2SRRSR X2 RRRR SRR RS R R
PROGRAM PSTDP.BAS VERSION WITH 3 ORDER HARVEST COST

STOCHASTIC DYNAMIC PROGRAMMING WITH OBJECTIVE FUNCTION APPROXIMATION
VIA MULTIDIMENSIONAL «(Z DIMENSIONS, ORDER 3) POLYNOMIALS

LOHMANDER PETER 90-08-18

BN NI NI U060 06 N U E IR 0600000 06 0K 0606 300 00300 0 U6 00 E 00 D00 RN RN

NUMBER OF TIME PERIODS = b
PSTDEV = 10 QRSTDEV = 30
NUMBER OF SAMPLES = 3 SYSTEMATIC DISTANCE = 3.1

R R L E T o e e e L e R

HERE THE OBJECTIVE FUNCTION AND DECISION LIST STARTS
O S e R R o s

THE VOLUME AND PRICE DIMENSIONS CORRESPOND TO ROWS AND COLUMNS
30 L.E. VOLUME L.E. 70, 30 L.E. PRICE L.E. 7O

TIME PERIOD = 1 , DOBJECTIVE FUNCTION VALUES =

1384.4 1470.8 1601.9 1778.0 18985.0
1714.3 1835.3 2009. 4 2220.5 2459.3
2004.9 2173.3 2386.0 2631.0 2901. 4
2269. 1 2480.7 2730.0 3008.86 3310.8
2504. 3 2755.3 3039.9 3351.8 3685.9

TIME PERIDD

il
(=
*

ODBJECTIVE FUNCTION STANDARD DEVIATIONS =

11.3 25.4 54.0 80. 4 106.5
8.4 12.6 34.1 56.1 8.3
20.4 5.3 16.6 34.6 53.5
28.0 i5.1 5.3 16.7 32.2
35.1 24.9 13.7 5.9 15.2
TIME PERIOD = 1 , OPTIMAL CONTROL =
1.0 3.3 9.7 14.0 17:3
1.0 7.0 12.0 16.0 19.0
3.7 10.0 14.0 18.0 20.3
8.0 12.3 1i6.0 19.0 22.0
10.7 14.7 17.7 20.7 23.3
TIME PERIOD = 1 , STANDARD DEVIATION IN OPTIMAL CONTROL =
0.0 2.5 1.5 2.0 1.5
0.0 2.0 1.0 1.0 1.0
1.5 1.0 1.0 1.0 0.6
1.0 0.6 1.0 i.o 1.0
0.6 0.6 0.6 0.6 0.6
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TIME PERIOD = 2 , OBJECTIVE FUNCTION VALUES =

1156.7 1248.2 1381.2 1544.6 1728.5
1460.9 1583.5 1752.1 1951.5 2174.7
1734.0 1901.0 2107.9 2345.3 2608.3
1977.2 2186.2 2431.0 2706.3 3008. 4
2178.7 2425.5 2706.6 3018.5 3358.6

TIME PERIOD = 2 , OBJECTIVE FUNCTION STANDARD DEVIATIONS =
7.8 22.3 46.0 64.3 79.0
28.1 10.9 16.0 28.1 37.4
38.9 23.8 13.9 11.1 13.9
45.3 34.0 25.8 21.3 21.4
47.7 38.0 31.3 28.4 30.0
TIME PERIOD = 2 , OPTIMAL CONTROL =
1.0 5.7 12.0 i5.7 i8.7v
1.3 7.3 12.7 16.0 18.7
4.7 10.3 14.3 17.3 20.0
9.3 13.3 16.3 19.3 21.3
13.0 16.7 18.3 22.0 24.0
TIME PERIOD = 2 , STANDARD DEVIATION IN OPTIMAL CONTROL =
0.0 4.5 3.0 2.5 2.5
0.6 2.5 2.1 2.0 2.1
1.2 1.5 1.5 1.5 1.0
0.6 0.6 0.6 0.6 0.6
0.0 0.6 0.6 0.0 0.0
TIME PERIOD = 3 , OBJECTIVE FUNCTION VALUES =

857.3 1103.1 1256.7 1417.6 1587. 4
1171.7 1364.4 1571.7 1781.5 2024.6
1367.6 1596. 4 1847.2 2116.3 2403.8
1542.2 1796. 3 2080.0 2388.9 2721.3
1693.6 1961.7 2268.0 2606.2 2973.9

TIME PERIOD = 3 , OBJECTIVE FUNCTION STANDARD DEVIATIONS =
10. 4 5.8 6.4 Ty 12.5
24.0 19.1 18.6 22.3 29.5
30.9 27.8 8.4 32.5 40,7
J4.1 31.1 31.9 de. 2 454.06

37.4 32.6 32.5 36.0 42.6
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TIME PERIOD = 3 , OPTIHMAL CONTROL =
8.3 11.7 13.3 15.3 16.3
10.0 14.0 16.0 18.0 19.3
11.7 15.7 18.3 20.3 22.0
13.7 18.0 21.0 23.0 25.0
15.0 19.7 23.0 25.0 27.0
TIME PERIOD = 3 , STANDARD DEVIATION IN OPTIMAL CONTROL =
2.5 2.1 1.5 1.5 1.5
1.0 1.0 1.0 1.0 0.6
0.6 0.6 0.6 0.6 0.0
0.6 0.0 0.0 0.0 0.0
0.0 0.6 0.0 0.0 0.0
TIME PERIOD = 4 , OBJECTIVE FUNCTION VALUES =
688. 4 880.7 1092. 4 1317.3 1549.5

830.8 1075. 4 1339.7 i617.1 1901.7
893.9 ii81.8 1489.7 1811.7 2141.6
885. 4 1206.1 1548.7 1906.7 2274.0
B34.9 1173.0 1538.2 1921.8 2316.9

TIME PERIOD = 4 , ODBJECTIVE FUNCTION STANDARD DEVIATIONS =
31.5 39.9 44.7 45.8 A2.5
22.8 31.6 37.5 39.4 37.8
11.1 20.6 27.1 30.3 29.1
1.1 8.3 15.2 18.9 i8.8
7.8 0.9 4.9 8.0 8.0
TIME PERIOD = 4 , OPTIMAL CONTROL =
11.7 13.3 15.3 17.0 i8.3
17.0 19.0 20.7 22.3 23.7
21.3 23.3 25.0 26.7 28.3
24.0 26.3 28.3 30.0 31.7
25.0 277 30.0 32.0 34.0
TIME PERIOD = 4 , STANDARD DEVIATION IN OPTIMAL CONTROL =

coQoCOo
choo

oooCc.
CODQRCO
. -
comoC
o000
cood o

(oo B o B o
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TIME PERIOD = S5 , OBJECTIVE FUNCTION VALUES =
348. 2 536.2 749. 4 8981.3 1214.9
348.2 536.2 743 . 4 984.9 1241.3
3a8.2 53d6.2 749_ 4 984.9 1241.3
348.2 H3iG. 2 f49. 4 984.9 1241.3
34B.2 E36.2 749. 4 984.9 1241.3

TIHE PERIOD = 5 , OBJECTIVE FUNCTION S5TANDARD DEVIATIONS =

Q.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
.0 0.0 .0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
.0 0.0 0.0 0.0 0.0
TIME FERIND = % . OPTIMAL CONTROL. =
22.0 26.0 29.0 30.0 30.0
22.0 £26.0 29.0 32.0 34.0
Z2. 26.0 29.0 s A 3a4.0
22.0 26.0 29.0 32.0 3a4.0
22.0 26.0 28.0 32.0 34.0
TIME PERIOD = 5 , STANDARD DEVIATIUN IN OFPTIMAL CONTROL =
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0



