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AND STOCHASTIC PRICES: Optimization of the adaptive stock control
function via a stochastic quasi-gradient method.

Abstract

The continuous harvesting problem has gained much attention in the
literature. Very detailed and instructive discussions of the
qualitative properties of the optimal solutions in deterministic
models have been presented. Highly detailed analytical models of the
harvesting problem with stochastic prices and growth have also been
presented where the main ambition has been to report the qualitative
answers to the questions: - In what directions are the optimal control
decisions changed in the presence of increasing risk in markets and/or
growth ? This paper contains a growth model of a type often used in
analytical deterministic control optimizations. Risk is introduced in
the future price path. The harvest decisions which maximize the
expected present value of all profits over time are made adaptively,
conditional on the latest available price and stock level information.

In this paper, such harvest control functions are optimized via a
stochastic quasi-gradient method. In principle, this method could be
replaced by stochastic dynamic programming. Then, however, the
numerically obtainable discrete state space resolution would restrict
the quality of the results. In this model, the state and the control
are continuous variables. The control function parameter optimizations
are made for different combinations of exogenous parameter
assumptions. The objective function is, within the gradient method
optimization routine, sequentially estimated via large numbers of long
horizon stochastic simulations of the complete adaptively controlled
system. Finally, the optimized adaptive harvest function is used in
connection to a large number of new stochastic price series. The
expected present value of adaptive harvesting with the optimized
function is compared to the expected present value which is obtained
when a deterministic rule is used. The optimal harvest and stock
levels are discussed and compared to the results obtained from
deterministic optimal control models. It is found that considerable
economic gains can be obtained when the optimized adaptive control
function is used instead of a deterministic control rule. Even very
low levels of stochastic price variation make it economically optimal
to control the forest stock in a way which is very different from what
you should do if you follow rules derived from deterministic models.
The optimal control and stock levels change drastically over time.
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1. Introduction

Is there a practical way to find the optimal market adapted harvest
policy in natural resource economics when the stock of the natural
resource and the harvest level are described as continuous variables ?

This question will be discussed in this paper under the assumptions
that the price of the natural resource is a stochastic process and
that the growth of the natural resource follows a logistic function.

A preliminary and explorative analysis will be made as an illustration
of continuous thinning in forestry.

1.1. Thinning and the literature

The problem of thinning in forestry has been studied from many
perspectives and for a long time. We may view the thinning problem as
the continuous forest control problem. We may, over time, control the
forest via changing thinning levels. We may sequentially take new
information into account in the decision problem. If we want to, we
can harvest all of the trees in the forest stand. Such an activity is
usually defined as a final felling or a clear cut. A forester would
never call that a thinning. From a control theoretical point of view,
it is just a special case of "thinning". One of the problems in
forestry is to find a reliable growth function that can be applied to
the relevant economic problem.

The age structure, the diameter, height and species distributions,
make this complicated. Frequently, foresters want very detailed
information about how the trees in the forest grow. Obviously all of
the mentioned distributions also affect the local growth conditions
and hence the growth of the trees in different parts of the stand. In
some cases, a high stand density is desirable in order to improve the
quality development. Unfortunately, in the end, it turns out that it
is not possible to treat all of the interesting sub-phenomena within
one model. We have to select the most interesting variables and try
to control the most important things. That is the purpose of this
paper. Some of the more recent papers in this field that should be
mentioned are given below. It is impossible to discuss all of them
here. The reader is encouraged to consult them for interesting ideas.

Thinning, emphasis on economics and decision theory

Brazee and Mendelsohn (1990), Gong (1992), Haight (1990), Kaya and
Buongiorno (1987), Kaya and Buongiorno (1989), Lohmander (1987),
(1988a), (1990a), (1990b), (1990c), Reed and Apaloo (1991), Solberg
and Haight (1991), Teeter and Caulfield (1991), Valsta (1992)

Thinning, emphasis on silviculture and growth
Hagner (1990a), (1990b), (1992), Klensmeden (1984), Lindman (1984),
Lundgvist (1989), Mielikdinen (1991), Nilsen (1988)

Growth functions and estimations
Carlsson (1991), Eriksson (1986), Huuri, Lihde and Huuri (1987),
Somers and Farrar (1991), Valinger (1990)

Some other papers in fields of more partial relevance to the content
of this paper are also included in the reference list. Some of the
more methodology oriented publications will be discussed in the later
sections in connection to the analysis.



2. The model and the optimization problem

The objective function is the expected present value of all present
and future harvesting. In the discrete time version of the problen,
the present value m may be written as in (1):

n=Y" e P, (1)

t=5,

t is the time period, P is net price (price - variable costs) and h is
harvest level. r denotes the rate of interest. Real prices and rates
of interests will be used. Fixed costs are not explicitly treated in
this paper since it will be assumed that such costs really are fixed
and do not affect optimal behaviour. More details concerning numerical
assumptions and bounds will be found below.

A "classical" deterministic, continuous state, continuous time,

natural resource model, different versions of which have been
presented by Clark (1976), is shown in (2) and (3):

max n=fe‘“R(h)dt (2)
[
s.t. = F(x)-h (3)

R(.) is the net revenue function, F(.) is the growth function
(strictly concave) and x is the stock of the natural resource. In the
analytical discussion of this paper, we will assume that R(.) is
strictly concave in h in the neighbourhood of the optimal harvest
level and that a unique optimum exists.

The biological growth function and the price function are two
important components that deserve special attention.

3. The deterministic solution

Let us derive some important results from the continuous deterministic
problem as a reference solution. An economic background and
interpretation of the famous formulae of optimal control theory will
be contained below.

In (4), we find the Hamiltonian (Hamiltonian function), H, of the
optimization problem in (2) and (3). Detailed presentations of this
equation are found in Clark (1976) and in other texts. H contains two
components, the integrand of (2) and the right hand side of (3)
multiplied by lambda, the dual variable of the problem, which may be
interpreted as the shadow price of the resource. The harvest, the
stock and the shadow price are all functions of time.



H=e **R(h) +A (F(x) -h) (4)

The optimization idea, which conceptually is similar to traditional
Lagrangian optimization, is to derive the harvest level which
maximizes H. In optimum, the first order derivative found in (5),
should have the wvalue zero.

o

—a-rtp/ B
3¢ R'(h) -A=0 (5)

We may now consider the similarity with Lagrange function optimization
more in detail: The derivative (5), which is equal to zero, contains
two components: The present value of the marginal (net) revenue of
harvesting minus the marginal resource value, the shadow price. Via
this equation, we instantly get one function of the shadow price (6).

A=e TtR'(h) (6)

Note that (6) could be obtained directly from the economic insight
that the marginal net revenue should be equal to the marginal cost of
harvesting, which is equal to the shadow price of the resource.
Equation (6) reveals that, in case harvesting is constant over time
and the (net) revenue function is identical over time, then the shadow
price (the value of a marginal unit of the resource) is a
monotonically decreasing function of time as long as r > 0. This is
reasonable from an economic point of view. We may use (6) to derive
the more general result (7):

%:e-rt-:vm’(m +R"(h) K) (7)

In (7) we find that not only the rate of interest and time, but also
the harvest path and the first two derivatives of the revenue function
affect the time path of the shadow price.

In (8), the "adjoint equation" of optimal control theory is stated.
(The shadow price is also sometimes denoted the adjoint variable.)
This equation must be satisfied along the optimal path. Below, an
economic interpretation of this equation will be given via the help of
a two period example. (Disciplin specific interpretations of these
equations can be found also in mechanics.)

oA __ OH -t

ot  ox

4. The adjoint equation and its economical interpretation

Imagine a two period harvest problem (9) and (10). We initially have X
units of the resource available. We shall determine the optimal
harvest vector x.



In period 0, the net price is P minus the Price change, and in period
1, the price is P. We implicitly assume that the prices are real,
discounted prices. In period 0, we may harvest one part of X and save
one part for the future period 1. The amount that we have available
for harvesting in period 1 is equal to the amount that we did not
harvest in period 0 plus the amount of growth that the saved resource
gave. This is found in (10).

max m=(P-AP)x,+Px, (9)

S.t. X =(X-X,) +F(X-x,) (10)

In fact, we may replace the two dimensional constrained optimization
problem (9) and (10) by a one dimensional unconstrained problem (11).

max m(x,) =(P-AP) x,+P( (X-x,) +F(X-x,)) (11)

The first order optimum condition of (11) is (12).

o= (P-AF] + P[-1-F/(X-x,)] =0 (12)
ax,

Denote the saved resource X (underlined) and rewrite (12) as (13).

-AP-PF/(X) =0 (13)

From (13) we instantly get (14). This equation may be interpreted the
following way:

When we, in period 0, have selected the optimal level of the stock
saved for the future, this must mean that the marginal unit of
harvesting in period 0 is exactly as profitable as the marginal unit
of stock saved for harvesting in period 1. Let us assume that we can
harvest one (marginal) cubic metre now, in period 0. Then we instantly
get (P - price change) crowns more. We can also save the cubic metre
and get the cubic metre plus growth in the next period. The
profitability of doing this must be identical if we use the marginal
resource unit optimally over time. Hence, if the marginal relative
growth, F'(x), is positive, then the marginal relative net price
change (discounted) must be negative.

/(x)--APF 1
FI(X) B (14)

Another way to come to equation (14), using economic logic, is the
following: Consider the marginal unit of the resource in a continuous
time problem. The resource level is X(t). We want to harvest this over
time in such a way that the real value of it, taking growth and real
price changes into account, does not change over time. The value of
the marginal unit, x, at time t is P(t)x(t).



The time derivative of the value is P'x + Px'. This time derivative
must be equal to zero. If we divide the expression by PX, which must
be greater than zero, we find that P'/P + x'/x must be equal to zero.
Since x'/x is the relative growth of the marginal resource unit, we
may replace it by F'(X). Hence, we may write P'/P + F'(X) = 0. This
equation is the same as (14) if we go from continuous to discrete
time, replacing time derivatives by time differences, and replace X by
the corresponding discrete time variable, the underlined X.

Equation (14) may instantly be rewritten as (15).
-PF/(X) =AP (15)

If we replace the prices in (15) by shadow prices, we get (16).
-AF(X) =AA (16)

Now, we consider time periods that become shorter and shorter. In the
limit, time becomes continuous, and we can replace the differences by
derivatives. Then, we have found the adjoint equation of optimal
control theory (17).

_H_2)
dx ot LA

Note in particular that ways to find the important equations needed to
solve the continous time optimal harvest control problem, (6) and
(17), have now been reported that are based on economic leogic only.
The equations will be used to derive general and particular results in
the following sections.

6. Qualitative results from the deterministic model

Now, we shall make use of the adjoint equation and derive some general
results from the deterministic continuous model. The derivative in
(18) is derived from (4).

OH 3 Pl (x) (18)
ox

The adjoint equation (17), (6) and (7), give us (19).
_eTtr/(h) F!(x) =e *t[-rR'(h) +R" (h) h] (19)

(19) may be rewritten as (20).
-R'(R) F/(x) =-rR!(h) +R" (h) k (20)

From (20), we get (21). We find that the time derivative of the
optimal harvest level is an explicit function of the difference
between the rate of interest and the marginal growth rate.



The ratio of the first and second order derivatives of the net revenue
function is strictly negative if we assume a strictly concave function
with positive marginal revenue.

! LY
B=[r-Fl(x)] 2 ) 21
[r-F'(3)] 27 (h) (21)

Mostly, there is a stock level which makes (21) take the value zero.
This stock level is called an equilibrium stock level. When the rate
of interest is equal to the marginal relative growth, we have reached
the equilibrium.

If the stock level is lower than the equilibrium (the marginal
relative growth is higher than the rate of interest), then harvesting
is initially low (lower than the growth) and increases over time as
the stock increases to the equilibrium.

If the stock level is higher than the equilibrium (the marginal
relative growth is lower than the rate of interest), then harvesting
is initially high (higher than the growth) and decreases over time as
the stock decreases to the equilibrium.

If R(.) becomes more linear, R''(.) approaches zero. Then the changes
in the harvest level over time become more dramatic since the absolute
value of the denominator in the RHS of (21) decreases. In the limit,

we approach the famous bang-bang policy mentioned later in this paper.

6. General properties and functions

Now, we turn to the (stochastic) discrete time model. In order not to
mix the concepts within the paper, the stock in the discrete time
model at time t is denoted by Q(t). Growth in this model is denoted by
G. We assume that growth from period t until period t+1 is a density
(stock) dependent Markov function, G = G(Q(t)). Hence, in the absence
of harvesting, the forward stock difference is:

G{t) = G(Q(L)) = AQ(t) = Q(t+1) - O(¢t) (22)

The harvest level at time t, h(t), is a function of the price level
and the stock level in the same time period.

h(t) = h(P(t),Q(t)). In the general case, when harvesting may take
strictly positive values, we have:

AQ(t) = G(O(E)) - h(P(t),0(t)) (23)

Price, P, is assumed to be an exogenous stochastic Markov process. In
the general case, we have:

AP(E)=AP(P(L),e(t)) (24)



where € is a series of random "errors" with some distribution and
autocorrelation zero. In the more restricted first order
autoregressive, AR1, case, we have:

P(t+1) =a + PP(L) + e(L) (25)

We assume that € is a series of normally distributed errors with mean
zero and autocorrelation zero. If ¢ > 0 and 0 < B < 1, which we
assume, then the process P is stationary with mean u = a/(1-B). It can
be shown that the autocorrelation function of P declines geometrically
in this case. The autocorrelation function approaches zero from above
as the number of lags increases from zero. Hence, when we work with a
time scale where each time step is sufficiently large, we may use the
approximation:

P(t) = p +g(t) (26)

The underlined epsilons denote a series of normally distributed errors
with mean zero, standard deviation ¢ and autocorrelation zero. This
kind of price process will be assumed in the numerical calculations of
this paper. Of course, more complicated process assumptions could be
made. This would however not serve the purpose of the study. It would
make the calculations less easy to follow and regquire more
assumptions. Furthermore, more complicated assumptions are only
interesting if there is some empirical data that supports them. The
same price process assumptions are alsc used by Lohmander (1983),
(1987), (1988b), Haight (1990), Braze and Mendelsohn (1990) and
others.

7. More specific growth assumptions

As a growth function, we start by, in the lack of more detailed
relevant understanding, using a discrete approximation of the logistic
function. The logistic function is usually presented in continuous
time. When X(t) is the stock level and there is no harvesting:

o DR =X
x = SX -oxa-Z) (27)

® and K denote the "intrinsic growth rate" and the "carrying
capacity", respectively. For a detailed presentation of this function
and its use, compare Clark (1976). Introducing a new constant, I', (27)
may be written as (28).

X =0x - I'x? (28)

We have to find a guadratic function with two parameters. We may
determine this equation of growth using two assumptions:



= The maximum growth per hectare occurs when the stand
density is Q° ( = 200) cubic metres per hectare.

- The maximum sustainable growth is 4 cubic metres
per hectare and year. The maximum sustainable growth per
hectare during a five year period is denoted G°.

Now we go back to our discrete approximation of the logistic function
and the problem relevant variables. We add a density independent small
"disturbance", N, reflecting the fact that growth will not stop for
"ever if all of the stock is harvested. If Q = 0 at a particular point
in time, seeds and plants from neighbour stands will finally invade
the area. Furthermore, we have the option of artificial regeneration.

G=0Q +00 -TIp? (29)

The first order condition of growth maximization is @ - 2 rQ = 0, or,
if we use the more explicit notation:

_20) =
8(1-20) =0 (30)

Assuming that & > 0, which is quite reasonable, we find that K = 20Q°.
Note in particular that 0 does not influence the relationship between
the carrying capacity and the growth maximizing stock level.
Making use of this finding, we have the following equation:

6 =Q+0p - & (g3 (31)
20

which can be simplified as

G =0 + %;r (32)

Now, we may select a combination of ® and 0 that is consistent with
our "empirical facts" Q° and G°. Since the disturbance 1 ~ 0, we have:

a

0=2 2 (33)
Q.

Now, we remember that Q° = 200 (cubic metres per hectare) and that the
growth is 4 cubic metres per hectare and year. Each period is assumed
to represent five years, which gives G° = 20. The resulting parameters
‘are K = 400 and ® = 0.2. I' = (8/K) = 0.0005. We assume that the
disturbance 0 = 0.3. This gives us the growth equation
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G=0.3+0.20 - 0.00050% (34)

We find that the maximum sustainable growth, via this equation
including the disturbance, is 4.06 cubic metres per year when the
stand density is 200 cubic metres per hectare. This is a satisfactory
representation of our "empirical" assumptions.

o
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0 100 200 300 400 m3/ ha

Figure 1.
The growth function
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Figure 2.
Stand density development without thinning according to the growth
function in Figure 1.
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8. More specific price assumptions

Each time period (which represents five years) we make a new price
observation. The harvest decision in that period is based on that
information. The price is used as a short notation for net price;
price minus variable harvest costs per cubic metre. We may also assume
that price is the price per cubic metre which the resource owner
recieves from a buyer who is responsible for the harvest. There are
empirical observations that support the assumption that the harvest
cost per cubic metre is not very sensitive to the stand density.
Compare Hagner (1990a), (1990b) and (1992). Hence, we may regard price
( = net price) as completely exogenous. Of course, in cases where
there are strong reasons to study the density effects in particular,
special harvest cost studies should be performed and the signifficant
results included in the analysis.

The price is assumed to be normally distributed with mean p and
standard deviation ¢ in each period. The autocorrelation is zero. In
the numerical analysis, p = 100 and o takes different values.

Since we assume that the decision maker maximizes the expected present
value of all harvests now and in the future, there is really no need
to investigate the sensitivity of optimal harvesting to g in this
problem. (The expected present value is however an increasing function
of u. It is proportional to p as long as the relative standard
deviation, o/u, is held constant.) It can be shown that changes in pu
leave the optimal harvest program unchanged as long as the relative
standard deviation, o/u, is held constant. The effects of increasing
standard deviation on optimal harvesting that are found in the
numerical analysis are functions of changes in the relative standard
deviation, o/p. Hence, we may interpret the numerical results more
generally than it may seem at first glance. For example, when ¢ is
given the value 30 and p is 100 in the calculations, the harvest
conseguences are relevant for every problem in the class where the
relative standard deviation takes the value 30%.

9. The adaptive harvest function

One can determine the qualitative properties of optimal adaptive
harvest functions via analytical stochastic dynamic optimization in
several general cases. This has been done by Lohmander (1987) and
(1988a). It is also possible to use stochastic dynamic programming
with discrete stock state and harvest control spaces in order to
determine optimal adaptive harvest functions numerically. Then,
however, the dimensionality problem generally restricts the resolution
of the results strongly. Some examples of discrete stochastic dynamic
optimal harvesting models are Lohmander (1987) and (19%90a).

It is sometimes possible to handle continucus stock and harvest
controls, via polynomial approximations of the objective function, in
the context of stochastic dynamic programming. One example of this is
Lohmander (1990d).

In this paper, however, a completely different approach will be used:
First the functional form of the adaptive harvest function will be
discussed and determined. Then, the parameters of the harvest function
are optimized. The objective function is approximated via a large
number of stochastic simulations of the complete system over a 300
year period.
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The adaptive harvest function parameters that optimize the objective
function are determined through the gradient method. Here, the optimal
step length is determined via the robust bisection method. More
details concerning the principles of the optimization methods is found
in Rdde & Westergren (1988). In all investigated cases, the solutions
have been found to converge to stationary points, local optima. The
initial parameter guesses have not affected the solutions. There is no
reason to believe that these optima are not also global optima. The
structure of the problem is such that one unique optlmum should be
expected even if a formal analytical proof of this is practically
impossible or at least extremely page consuming because of the ;
complexity of the model. Proofs of uniqueness in slightly different
models of a similar type has been reported by Lohmander (1987) and
(1988a).

An intuitive discussion will here be presented which supports a
particular kind of adaptive harvest function. From deterministic
resource economics, presented in for instance Clark (1976), it is well
known that the optimal harvest policy can belong to qualltatlvely
different classes. If the objective function is linear (which is the
case if the net price is exogenous), the optimal harvest policy is a
"bang-bang" policy. One should make the resource approach the optimal
stock as rapidly as possible. Initially, if we start at stocks that
are lower than optimal, we will experience a period during which no
harvest takes place. When the optimal stock is reached, on the other
hand, the harvest will be identical to the growth at that stock, a
constant, for ever.

If the objective function is strictly concave, which is often
implicitly assumed without much concern in economic models, the
approach to the equilibrium is more smooth, from above or from below,
depending on the initial stock level. If, which is often highly
relevant in resource economics, there are economies of scale (the
objective function is strictly convex), then pulse extraction of the
resource can often be shown to be optimal. This means that harvesting
is a periodic activity and that the natural resource is allowed to
change stock level considerably between the harvest sessions. In fact,
with a time and space scale, where each period is sufficiently short
and each unit area under harvesting is sufficiently small, it is
obvious that pulse extraction is the only possible alternative. The
forest worker can not work everywhere in the forest at the same time,
slowly and partly harvesting every tree. The fisherman can not cover
every part of the ocean simultaneously and always with his efforts. oOf
course, these observations are results of economies of scale. If the
time periods are longer and the spatial resolution is lower, on the
other hand, it is likely that the harvest activity will look
continuous and smooth.

What is common in the above findings, however, is that the stock
should sooner or later be adjusted towards some optimal level or at
least to some interval. In other words, the harvest level should be an
increasing function of the stock.

The deterministic resource models tell us little about the effects of
price changes on harvesting. Some special assumptions have however
been made in the literature and the results derived. Here, I will
argue, with theoretical support from other analytical stochastic
resource models, that optimal harvesting should be an increasing
function of price as long as the price process is stationary. Compare
Lohmander (1987), (1988a) and (1990a).
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If price is stationary and if we observe that the present price is
higher than usual, we should harvest more than usual, since the
expected price in the future is lower than what we observe just now.
On the other hand, maybe we should harvest less than in a
deterministic situatlon even if the price is higher than usual! The
reason in this case is that we can wait many periods for sufficiently
hlgh prices. We may want a price that is much higher than the average
in order to find it economically interesting to harvest (and take away
later harvesting options) in a particular time peried.

In any case, we find that the optimal harvest level is an increasing
function of price in the same period.

Let us suggest a functional form of U, the relative harvest level,
which is simple and robust and makes it possible to estimate the
suggested effects.

U=a + bP + cQ (35)

(More precisely, U follows equation (35) as long as 0 < U < 1. U is
bounded from below and from above. In the following discussion, this
assumption is implicit in order to save space.) P is price and Q is
stock level. a, b and ¢ are parameters such that a < 0, 0 < b, 0 < c.
The harvest level is thus

h(t) = U(£)Q(t) = aQ(t) + bP(t)O(t) + clo(t)]? (36)

Why is the relative harvest level U and not the harvest level, h,
selected to be a linear and increasing function of P and Q? This is
partly a compromise. First, it makes it possible to determine the
synergy effects of P and Q since "bPQ" appears in the harvest function
(36) . Second, it makes it possible to determine if a "smooth" approach
to some more or less stable equilibrium should be tried via the
quadratic term cQ? in the expression of h. Third, we can be convinced
that harvesting will stay feasible, h < Q. Finally, the function is
robust and simple. If there are more parameters in the function, it is
possible that the solution to the parameter optimization problem may
not converge or may need a very large number of experiments in order
to give reliable parameter estimates.

10. Optimigation of the adaptive harvest function parameters

When the parameters of the adaptive relative harvest volume function
should be optimized, we may experience numerical problems if the
original form is used, namely:

U=a + bP + cQ (37)

The reason is that we need to calculate approximative values of the
first order partial derivatives of U with respect to a, b and ¢ within
the gradient method. These derivatives are used when the optimal
directions of parameter combination changes are determined.



15

When we change one of the parameters a, b or ¢, this generally affects
the first order derivatives of U with respect to the other parameters
strongly in this equation.

One common way to take the second order derivatives into
consideration, improving the speed of convergence, is the well known
Newton-Raphson method. This, however, only works well if the cbjective
function is strictly concave everywhere. In this application, in
particular since we can only obtain approximative numerical values of
the function and the derivatives, the Newton-Raphson method does not
work well. Because of the approximation errors present already in the
estimations of U, it is clear that first, and in particular second,
order derivative approximations, will be based on several errors. In
cases where the true objective function is strictly concave but almost
linear in some regions, which is typical in these optimization
problems, the approximation errors can make the local estimations of
the partial second order derivatives get the wrong signs.

Hence, the function may seem convex and the solution diverges from the
true optimum with, for instance, the Newton-Raphson method, or other
methods based on second order derivative estimations. For this reason,
a gradient method based solely on the first order derivative
approximations is used in this problem. This method works well as long
as the objective function is quasi-concave. Hence, the applicability
of the approach covers a quite general class of problems: A strictly
concave objective function is no longer necessary.

In this particular kind of problem, one obtains much faster
convergence to the optimal parameter solution if some other parameters
(a®, b®, c°) are used instead of (a, b, c) in the algorithm. The new
parameters (a°, b°, c°) are then transformed back to the old
parameters (a, b, c). It is important to define the new parameters in
such a way that the mixed second order derivatives of the objective
function with respect to these parameters are close to zero and that
the old parameters can uniquely be determined from the new parameters.
In other words, the new parameters should exXpress relations that are
not likely to affect each other very much.

What such new parameters should we select? Here is the list of new
parameters used in the optimizations:

= Parameter (a°) is the price level which makes U = a + bP + cQ =0
when Q = 100. In other words, a° is the lowest price that makes
harvesting profitable if the stock level is 100 cubic metres per
hectare.

- Parameter (b°) is slope of the "iso relative harvest line", 6P/§0Q,
at the point (Q, P) = (100, a®).

= Parameter (c°) is the derivative of U, the relative harvest
function, with respect to price, at stock and price combinations
(Q, P) where optimal harvesting is strictly positive.

Scaling problems and other numerical issues exist that are not
discussed here. In the specially constructed computer program, these
questions are discussed within the algorithm in the form of remarks.
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Finally, when the parametefs (a®, b*, c°) have been optimized, the old
parameters (a, b, c) are determined from three equations:

a =c"(100b"-a") (38)
b=c (39)
c = -b%c" (40)

(Note that changes in parameter c® affect the values of a, b and ¢
simultaneously. Changes in b° affect the values of a and c.) It should
be stressed that convergence to local optima (that almost certainly
are global) was obtained with this method in every tested case.

The parameter optimizations were performed for all combinations of the
real rates of interest 0%, 1%, 2%, 3%, 4% and the relative standard
deviations in the price process 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%.
Hence, totally 40 parameter set optimizations where made.

Next, a multiple ordinary least squares regression analysis, OLS, was
made of the new parameters as functions of the real rate of interest
and the relative standard deviation of price. The following results
were found:

a®=115.5 - 18.88r + 1.271s (41)
b*=-0.2303 - 0.002999s (42)
c® =0.01397 + 0.00384r - 0.0001544s (43)

r and s denote real rate of interest and relative price standard
deviation respectively. The regression calculations gave the result
that all coefficients of the estimated equations were statistically
significant at the 95% confidence level. We should be aware that the
residuals should not be expected to be normally distributed because of
nonlinearities in the model generating the data. Hence, we should not
take the significance information too seriously. Nevertheless, when
the partial derivatives of the parameters with respect to the rate of
interest and to the relative standard deviation are studied, we find
reasonable economic results:

- When the rate of interest increases, the lowest price that motivates

harvesting (when Q = 100) decreases. This decrease is about 19 percent

of the mean price (18.88 SEK) per unit (%) of the rate of interest.
This finding is consistent with traditional resource
economics: When the rate of interest increases, we should
decrease the stock level.
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- When the relative standard deviation of the price process increases,
the lowest price that motivates harvesting (when Q=100) increases.
When the relative standard deviation increases with 1 unit (1 %), then
this price increases by 1.3 % of the mean price (1.271 SEK).
This is consistent with the literature on stochastic resource
economics under the influence of stationary price processes
(Compare Lohmander (1987) and (1988a).) Note in particular
that this result, also reveals that the expected value of the
stock increases as the standard deviation of the price
process increases. This is why we should not accept to
harvest at a particular price in the more risky environment.
We should save the resource longer and let it grow to a
higher stock level, waiting for even better future options!

- When the relative standard deviation of price increases, the slope
of the "iso relative harvest level" line becomes a little steeper.
(The derivative = - 0.003)

- The derivative of optimal relative harvesting with respect to the
rate of interest is positive and the derivative with respect to the
relative price standard deviation is negative. Again, this is
understandable: When the rate of interest increases, future profits
become less essential. Hence, present harvesting should be more
sensitive to the present price when the rate of interest increases.
When the price standard deviation increases, very high prices become
more probable. Then harvesting should be less price sensitive than
otherwise. We should not harvest much if the price is not very high.
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Figure 3.

Optimal adaptive harvest functions for different combinations of the
rate of interest and the standard deviation of (net) price.
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11. Results

Below, the results from the analytical deterministic model will be
discussed and compared to the results from the stochastic numerical
model. Note in particular that the average optimal stock level derived
from the stochastic optimization model is very similar to the optimal
stock level in equilibrium, derived from the deterministic model. The
degrees of stock and harvest variation in the stochastic model are
however very high. Sometimes, the optimal "thinning”" is to harvest all
of the trees at once. Hence, we find that there is not always a stiff
border between "pulse" and "continuous" harvesting in stochastic
adaptive economic resource problems.

12. The deterministic equilibrium stock level

When we use one year long time periods, the empirical assumptions give
us the growth equation

F(x) =0.06 + 0.04x — 0.0001x? (44)

The equilibrium stock level is determined by the condition that
harvesting is constant,

dh
on _ 45
3t 0 (45)
This is fullfilled when
[F/{x*)-r] =0.04 - 0.0002%x* - T =0 (46)

From this equation, we may determine the equilibrium stock from the
simple condition:

= 200 - 5000r (47)

Hence, we know that the equilibrium stock is 200 cubic metres per
hectare when the rate of interest is 0. The equilibrium stock
decreases with 50 cubic metres when the rate of interest increases
with one percent.

rate of interest equilibrium stock
0 200
1 150
2 100
3 50
4 0
Table 1.

The equilibrium stock as a function of the rate of interest in the
deterministic case.
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13. Optimal adaptive harvesting in the stochastic case

The results presented in this section are based on different
assumptions concerning the rate of interest and the relative standard
deviation of the net price. The optimized adaptive harvestlng function
is in each case determined via the equations reported in the earlier
sections. In every case, the initial stock level is 50 cubic metres
per hectare.

Figure 4. to Figure 9. include complete descriptions of the results
obtained in the 'different cases. The guasi-random numbers used in the
different cases are the same. Below each graph, the assumptions are
printed. (r, S, SA, PV) denote (real rate of interest, relative
standard deviation in the price process, "assumed" relative standard
deviation in the price process, present value.) The "assumed" relative
standard deviation is the value used to derive the optimal control
function. Clearly, we can not always be sure that the controller knows
the true value of the future standard deviation. In the analysis of
this paper, we will however always assume that the controller makes
the correct variability assumption. In Figure 4., 5. and 6., we find
that the average stock level decreases dramatically with the rate of
interest. This effect is almost identical to the effect which we found
in Table 1. The present value is strongly negatively affected by the
real rate of interest. Note that clear cuts take place also with this
"thinning™ model.

Figure 7. should be compared to Figure 4. In Figure 7., harvesting is
constrained and in Figure 4. harvesting takes place according to the
adaptive function and the revealed prices. The constraint implies
that: 1/ - Harvesting takes place only if the stock level is above 150
cubic metres per hectare. 2/ - Then, the harvest level is such that
the stock level after harvest is reduced to the value 150. We note
that, even if the average stock level is almost the same as in Figure
4., the present value is much lower. The present value per hectare is
reduced from SEK 26 263 to SEK 20 029 by the harvest constraint.

Figure 8. is based on a much lower relative price variation than
Figure 4. We note that price variation and adaptive behaviour is
profitable: The present value in Figure 8. is SEK 20 036. The average
stock level is still cleose to 150 cubic metres per hectare.

Figure 9. is the high net price variation case. Since the relative net
price variation is higher than the average in areas where the variable
harvesting and transportation costs are high, this figure represents
such regions. The general result, that adaptive behaviour in the
presence of high price variation is profitable, is emphasized.

In Table 2., the expected results from a large number of "stochastic
price sequences" with adaptive harvesting are reported. The expected
present value decreases rapidly with the rate of interest and
increases much with the relative standard deviation in the price
process. The standard deviations of the present values within each
parameter group are surprisingly low. Hence, it is not very critical
that a particular stochastic price sequence appears. The adaptive
harvests take advantage of the good years when they appear and the
forest volume can be distributed over time in an appropriate manner.



21

300

200 /Y &

STUCK
b

wo |/ v

200

A
100 L mMa_In ALA [

300

200

100

FARVESE

0 M N

0 50 100 150

VEAR

lr, 8, 8A, PVl = [ 1, 30, 30, 26262.54 )

Figure 4.
Stock level, net price and harvest level.
Low rate of interest and medium price variation.



Figure 5.

STOCK

HARYEST FHRICE

300

200

100 -

200

100

300

200

100

22

' P’\f\....h/\v\/\_“
LY ”\vl k-
A
A LoAly |
Mlaa oAV

o0

100

YEAR

fr. S, SA, PYI = (2, 30, 30, 10264.24 )

Stock level, net price and harvest level.
Medium rate of interest and medium price variation.



Figure 6.

STOCK

HARVEST  FPRICE

300

200

100

200

100

300

200

100

23

A
e PR L]
MY ’V\Vf 1
|
!
| alA
50 100 150

YEAR

Ir, S, A, P¥I = 1 3, 30, 30, 5521.294 )

Stock level, net price and harvest level.
High rate of interest and medium price variation.

200



24

300

200

o0 L./

STOCK

200
00 L A A Am/\VJ‘

300

200

100

HARVEST FRICE

0 50 100 150 200

YEAR

Ir, 8 SA, W) =1 1,30, 30, 20029.28 )

Figure 7.

Stock level, net price and harvest level.

Low rate of interest and medium price variation.
Constrained and constant harvesting level.



25

300

200
T p D i il | e

STOCK

200

100

300

200

ARVEST  FRICE

0 _JA iVa \

0 o0 100 150 200

TEAH

(r, 8, 3, PYI= (1,5, 5, 20085.76 )

Figure 8.
Stock level, net price and harvest level.
Low rate of interest and low price variation.



Figure 9.

STOCK

HARVEST FRICE

300

200

100.

200

100

300

200

100

26

|

L LA

i
f
|

L/

o0

100

150

YEAR

lr. S, SA PV) =11, 50, 50, 30575.6 )

Stock level, net price and harvest level.
Low rate of interest and high price variation.

200



27

Relative Standard Deviation in the Price Process

Int. 0% 30%

1% 21 294 (0) 28 726 (1 656)
2% 6 960 (0) 11 011 (583)
3% 4 529 (0) 6 490 (633)
Table 2. :

The expected present value per hectare as a function of the rate of
interest (Int.) and the relative standard deviation in the price
process. Each figure is calculated from 100 stochastic simulations
over 300 years. The figures in the table are the average present value
of the 100 simulations and the standard deviation (in brackets).

14. Conclusions and suggestions for the future

The analysis presented in this paper has shown that it is quite
possible to take the fact that future prices are not yet known into
account in the planning of forest thinnings (and clear cuts). The
primary concern should be to optimize an adaptive harvest function.
The harvest level should not be determined before we have observed the
net price and the stock level. We can expect to gain considerable
economic values from adaptive harvesting this way.
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Appendix

This appendix includes the parameter optimization program ADGFOR20.BAS
and the test and estimation program ADAPT6.BAS.

Page Content

A2 Example of computer screen (Table A.1.)
A2 Example of input data file (Table A.2.)
A3 Parameter optimization program ADGFOR20.BAS

Al0 Test and estimation program ADAPT6.DAT (with plotter options)



A2

HAEAAREAT R TR AR TR Ak vk bbbk kb dh Ak bk k kbt hhdx®
EXPER = 1 N = 64 interest = 0 TMAX = &0 PERL = 5
EXPECTED PRICE = 100 STANDARD DEVIATION = 30

INITIAL STOCK = 50

NUMBER OF PRICE SERIES IN EACH EXPERIMENT = 10

GROWTH FUNCTION PARAMETERS = 0.3000000 0.2000000 -0.0005000
STOMAX = 400 RELHMIN = 0 RELHMAX = 1

VARIABLE VALUE CHANGE REL. CH.
1.00000 1.40622 =0.00096 -0.00068
2.00000 -3.61806 -0.00168 0.000486
3.00000 0.69678 0.00028 0.00040

**xxx** OBJECTIVE FUNCTION VALUE = 1276904.5219B673 #awk*x

AVERAGE STOCK (WITH ONE SERIES) = 1B80.257419622407
AVERAGE HARVEST (WITH ONE SERIES) = 17.2755353116479
50 <= STOCK (WITH ONE SERIES) <= 264.385056764321
0 <= HARVEST (WITH ONE SERIES) <= 109.469895010405

Table A.1l.
Example of computer screen information during the final part of the
stochastic quasi-gradient iterations.

Data Explanation

0 Rate of interest (%)

60 TMAX (number of periods)

<3 Relative standard deviation in the price process
10 Number of price series in each experiment

i Growth parameters GRL10

il GR11

-.0005 GR12

400 Maximum stock level

0 Lowest possible level of relative harvesting
1 Highest possible level of relative harvesting
0 Sound signal? (0 = no, 1 = yes)

Table A.2.

Example of input data on the file INADG.DAT.
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REM *i!**i*t****i***b*i******l**********l*it*tl*i**i****

REM ADGFOR20.BAS
REM LOHMANDER PETER 91-11-28, 12.38
REM PROGRAM FOR STOCHASTIC QUASIGRADIENT OPTIMIZATION OF

REM THE ADAPTIVE HARVEST CONTROL FUNCTION.
REM **********‘t'\!t******t***ii**iit**!*ii***ﬂi****i****i*

REM The application is a natural resource.

REM In some cases, growth can be approximated by a size independent
REM but density dependent logistic growth function. The price

REM can be described as a stochastic process,

REM The objective is to find the adaptive harvest decision rule

REM that maximizes the expected present value of all activities over
REM time. A complete Markov decision treatment with linear programming
REM and/or policy iteration is not possible since the state space in
REM that case must be discrete and becomes very large and numerically
REM difficult to handle if a high state space resolution is needed.
REM The problem with the Newton Raphson method in this application
REM is that the objective function is not everywhers

REM two times continuously differentiable with respect

REM te all variables of interast.

CLS
REM RANDOMIZE

REM **it****t********‘li***********t**t***** whkEk R Ak h kA khkww

REM SECTION 1. Dimensions, openings, inputs and definitions.
REM **********************ittt********i*i***ttt***i**t*ai*tt

DEFDBL A-H, 0-Z
DIM X{10), XBEST(10), FX(10), DX(10), XOLD{10), XCHANGE (10)
DIM ¥(1, 100), U(1, 100), P{100, 60), PRO(100), DISC(100)
DIM XTOT(10, 10), AVERS(10), AVERH(10)

OPEN "INADG.DAT" FOR INPUT AS #1
OPEN "UTADG.DAT" FOR OUTPUT AS #2

CLS

REM The number of parameters to be optimized, IXMAX, is determined.
IXMAY = 3

IMAX = IXMAX

JMAX = IMAX + 1

INPUT #1, RATEINT
R = RATEINT / 100

REM STA = step size when the partial derivatives are approximated.
STA = .001

REM DISTO = initial step size in the gradient method (before step
REM size reduction via the bisection method takes place).
DISTO = 1

REM LENGTH OF EACH PERIOD
PERL = 5§

REM TIME HORIZON

INPUT #1, TMAX

REM AVERAGE PRICE

PAV = 100

INPUT #1, RELSTD

STDEV = RELSTD * PAV

REM INITIAL STOCK
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VOLZERO = 50

REM NUMBER OF EXPERIMENTS

NUMEX = 1

INFUT #1, NUMPRI

REM GROWTH FUNCTION PARAMETERS

REM GR10 = .3: GR11 = .2: GR12 = -.0005: STOMAX = 400
INPUT #1, GR10

INPUT #1, GR1ll -
INPUT #1, GR12

INPUT #1, STOMAX

REM RELATIVE HARVEST LEVEL LIMITS

REM RELHMIN = 0: RELHMAX = 1

INPUT #1, RELHMIN

INPUT #1, RELHMAX

INPUT #1, SGNL

Rm *********.ﬁtiﬁ***t**********ll!iIi*.****i*'*******i****til!‘!i
REM SECTION 2. The experiment loop starts here. NUMEX experiments

REM will take place where each experiment has its own
REM set of NUMPRI stochastic price series. For each
REM set of price series, the harvest function is

REM optimized. The price series are generated from an
REM application of the central limit theorem. They
REM are approximately N(PAV,STDEV~2). Compare Rde and
REM Westergren (1988) pg. 316.

REM Pt TT2ti ittt tses szt s+ 3 2282 222 22 22 2 Rt Al A bbb bbby

FOR EPER = 1 TO NUMEX

REM Here, the stochastic price series are calculated.
FORT = 1 TO (TMAX - 1)

FOR MNPRI = 1 TO NUMPRI

PRAN = 0: FOR I = 1 TO 12: PRAN = PRAN + RND: NEXT I
P(NPRI, T) = PAV + (PRAN - 6) * STDEV

NEXT NPRI

DISC(T) = EXP(-R * T * PERL)

NEXT T

REM Here, the parameter start values are determined.
X(1) = 1.2: X(2) = =3: X(3) = 1.3

REM The start values are saved in XOLD(.).
FOR I = 1 TO IXMAX: XOLD(I) = X(I): NEXT I

REM The number of step directions, N, the "best objective function

REM value", PI0O, and the "latest cbjective function value", AOBJ, are
REM given initial values that make the iteration leave the initial guess.
N=20

PID = O

AQOBJ = -1000

430 REM The "latest objective function value”, AOBJ, is calculated in the
REM subroutine where the complete dynamical system is included.
GOSUB 2190

REM If the latest solution is better than the old solution, then we

REM move on to 422 and test a new direction and more movements from the
REM latest solution.

420 IF PIO < AOBJ THEN GOTO 422

REM Now, the old solution clearly was not worse than the old solution.
REM Hence, we accept the solution and move on the the next experiment.
423 NEXT EPER

REM Now, all experiments have been completed. It is time to send the
REM solutions to the result file UTADG.DAT. This is done from line 1000.
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421 GOTO 1000

422 REM

N=N+1

REM If more than 200 directions have been tested in this experiment,
REM then the iterations are stopped and the next experiment is started.
IF N > 200 THEN GOTC 423

STELOC = O

CLS

REM #kkdkikdkkhdhh bbb hhhhhhhbbhhhhrdhhrhhkdbbbhdrtrhhhddhdhhdd

REM SECTION 3. The latest solution is printed on the screen.
REM *kkkkdkhkbkhkhkdbhhhbhbbbnrdtdhbhbddtbkbhdrbrrhddthttdbhhkhdhidd

PRINT Nhkdkhhkbhhhhhhhdh bbbk bk kA kA A AR T AR Ak A E R A Ak hkdhhd kA bhdriil

PRINT "EXPER = "; EPER;

PRINT " N = "; N; " interest = "™; RATEINT; ™ TMAX = "; TMAX; "PERL = "; PERL
PRINT "EXPECTED PRICE = "; PAV; " STANDARD DEVIATION = "; STDEV

PRINT "INITIAL STOCE = "; VOLZERO

PRINT "NUMBER OF PRICE SERIES IN EACH EXPERIMENT = "; NUMPRI

PRINT "GROWTH FUNCTION PARAMETERS = ";

PRINT USING "###.#######"; GR10; GR1ll; GR12

PRINT ®STOMAX = "; STOMAX; " RELHMIN = "; RELHMIN; " RELHMAX = "; RELHMAX

PRINT "™
PRINT " VARIABLE VALUE CHANGE REL. CH."

FOR IX = 1 TO IXMAX

XCHANGE(IX) = X(IX) = XOLD(IX)

RECH = 0

IF N = 1 THEN GOTO 77

RECH = XCHANGE(IX) / X(IX)

77 PRINT USING “##F##F.#####"; IX; X(IX); XCHANGE(IX); RECH

XTOT (EPER, IX) = X(IX)
XOLD(IX) = X(IX)

NEXT IX

PRINT nn

PRINT " ##%%x%%x OBJECTIVE FUNCTION VALUE = "; AOBJ; " #axzxx0t
PRINT ""

STOCKTOT 0: HARVTOT = 0O

STOCKMAX 0: STOCKMIN = 10000: HARVMAX = 0: HARVMIN = 10000
FORT =1 TO (THAX = 1)

H1T = U(1, T) * ¥(1, T)

HARVTOT = HARVTOT + HI1T

STOCKTOT = STOCKTOT + Y (1, T)

IF H1T > HARVMAX THEN HARVMAX = HI1T

IF H1T < HARVMIN THEN HARVMIN = H1T

IF ¥(1, T) > STOCKMAX THEN STOCEMAX = ¥(1, T)
IF ¥{(1, T) < STOCEMIN THEN STOCKMIN = ¥(1, T)
NEXT T

HARVMED = HARVTOT / (TMAX - 1}

STOCKMED = STOCKTOT / (TMAX - 1)

PRINT "AVERAGE STOCK (WITH ONE SERIES) = "; STOCKMED
AVERS (EPER) = STOCKMED

PRINT "AVERAGE HARVEST (WITH ONE SERIES) = ™; HARVMED

AVERH (EPER) = HARVMED

PRINT STOCEMIN; " <= STOCK (WITH ONE SERIES) <= "; STOCKMAX
PRINT HARVMIN; "<= HARVEST (WITH ONE SERIES) <= "; HARVMAX

REM The objective function is calculated in the present position, PIO.
GOSUB 2190
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PIO = AOBJ
PROFBEST = PIO

REM The partial derivatives of the objective function are calculated.
FOR IX = 1 TO IXMAX

X(IX) = X(IX) + STA

GOSUB 2190

PI1 = AOBJ

X(IX) = X(IX) - STA

FX(IX) = (PI1 - PIO) / STA

NEXT IX

REM The distance PRELDIS is the Euclidian distance of the movement
REM if all parameters (variables) are moved the distances egual
REM to the partial derivatives of the objective function to

REM the respective parameters (variables).

PRELDIS = 0

FOR IX = 1 TO IXMAX

PRELDIS = PRELDIS + FX(IX) * FX(IX)

NEXT IX

PRELDIS = PRELDIS *~ .5

IF PRELDIS < .0001 THEN PRINT "STEP=0O"

REM Determination of the optimal step length in the suggested direction
REM via a modified bisection method.

FROMDIR = PIO

DIST = DISTO

7 REM

STELOC = STELOC + 1

REM If we have taken more than 100 steps in the suggested direction, some
REM numerical problem may be present or we may have an objective function
REM that is not locally concave. We keep the latest cbjective function
REM value and leave the local steps and iterations.

IF STELOC > 100 THEN GOTO 430

REM If the steps are still sufficiently large, go to line 20.

IF DIST > (DISTO / 3000) THEN GOTO 20

REM Now, the steps are too short. The old solution is selected and we
REM finally leave the iterations.

FOR IX = 1 TO IXMAX
X(IX) = XBEST(IX)
NEXT TX

GOTO 430

20 REM

REM The different parameters (variables), X(IX), are changed in the
REM suggested direction in a way that makes the Euclidian distance of
REM the movement equal to the step length.

FOR IX = 1 TO IXMAX

DX(IX) = FX(IX) * DIST / PRELDIS

NEXT IX

FOR IX = 1 TO IXMAX
X(IX) = X(IX) + DX(IX)
NEXT IX

GOSUB 2190
PROMEV = AOQBJ
IF PROMEV > PROMDIR THEN GOTO 8

FOR IX = 1 TO IXMAX
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X(IX) = X(IX) - 2 * DX(IX)
NEXT IX

DIST = DIST / 2
GOSUB 2190
PROMDIR = AOBJ
GOTO 7

8 PROMDIR = PROMEV

IF PROMDIR <= PROFBEST THEN GOTO 7
PROFBEST = PROMDIR

FOR IX = 1 TO IXMAX

XBEST(IX) = X(IX)

MEXT IX

GOTO 7
END

1000 REM

PRINT #2, "FILE = UTADG.DAT"

FRINT #2, "RESULTS FROM ADGFORZ0.BAS"

PRINT #2, "NUMBER OF EXPERIMENTS = "; NUMEX

PRINT #2, "NUMBER OF PRICE SERIES IN EACH EXPERIMENT = "; NUMPRI

PRINT #2, "INTEREST RATE = "; RATEINT; " NUMBER OF PERIODS = "; TMAX
PRINT #2, "LENGTH OF EACH PERIOD = "; PERL
PRINT #2, "EXPECTED PRICE = "; PAV; " STANDARD DEVIATICN = "; STDEV

FRINT #2, "INITIAL STOCK = "; VOLZERC

PRINT #2, "GROWTH FUNCTION PARAMETERS = ";

PRINT #2, USING "###.#######"; GR10; GR1ll; GR12

PRINT #2, "STOMAX = "; STOMAX

PRINT #2, "RELHMIN = "; RELHMIN; " RELHMAX = "; RELHMAX

PRINT #2, ™"

PRINT #2, "THE OPTIMIZED ADAPTIVE HARVEST FUNCTION PARAMETERS RARE: "
FOR EPER = 1 TO NUMEX

PRINT #2, "EXPERIMENT = "; EPER

PRINT #2, "PARAMETER LIST = ";

PRINT #2, "

FOR IX = 1 TO IXMAX

PRINT #2, USING "######4.#####"; XTOT(EPER, IX);
NEXT IX

PRINT #2, "

NEXT EPER

REM Scometimes, it may be valuable to store all price series in a
REM special matrix PTOT(.) and to print the used prices below.
REM PRINT #2, ""

REM PRINT #2, "LIST OF STCCHASTIC PRICES USED IN THE OPTIMIZATICNS:"
REM FOR EPER = 1 TO NUMEX

REM PRINT #2, "»

REM PRINT #2, "EXPERIMENT = "; EPER

REM FOR NPRI = 1 TQ NUMPRI

REM FRINT #2, "PRICE SERIES NUMBER = "; NPFRI

REM PRINT #2, "r

REM NNT = =1

REM FOR T = 1 TO TMAX

REM NNT = NNT + 1

REM IF NNT = 5 THEN PRINT #2, "V

REM IF NNT = 5 THEN NNT = 0

REM PRINT #2, USING "#####.##"; PTOT(EPER, NPRI, Tj;

REM NEXT T



AB

REM PRINT #2, "": PRINT #2, ""
REM NEXT NPRI
REM NEXT EPER

PRINT #2, ""
PRINT #2, "#wxkdkxrkwxxnin END OF LIST #kkskhkkkikrkakhrs

CLOSE #2
IF SGNL = 0 THEN END

FOR I =1 TO 2: SOUND (1000 + I * 50), 5
SOUND (3000 - I * 50), 5: NEXT I

END

2190 REM

REM SS58S5555555555555555555558555535855555555555555555555555585858588
REM HERE, THE OBJECTIVE FUNCTION, ACBJ, IS "WRITTEN".

REM NOTE THAT THE "OBJECTIVE FUNCTION" MUST BE CALCULATED VIA THE
REM SIMULATION OF THE COMPLETE SYSTEM DURING A LONG TIME FERIOD!
REM S555555555555555555555555555555555588555555555855585555558568
PROFIT = Q

REM The calculations are repeated for each price series in the experiment.
FOR NPRI = 1 TO NUMFRI

REM The parameters are determined.

A= X(1) * 100: B = X(2) * .1: © = X(3) * .01
Kll = C * (100 * B - A): K12 = C: K13 = =B * C

¥(1, 1) = VOLZERO

REM The path and the objective functicn of the
REM system under adaptive control are calculated.

FOR T = 1 TO (TMAX - 1]}
T2 =T 4+ 1

REM Adaptive control decisions.

U({i, T) = K11 + K12.% P(HPRI, T) + K13 * ¥(1, T}

IF U(1, T) < RELHMIN THEN U(1, T) = RELHMIHN

IF U(1, T) > RELHMAX THEN U(l, T) = RELHMAX

REM Difference equation path calculation.

ST1 = ¥(1, T) * (1 - U(1, T))

GR1 = GR10 + GR1l * 5T1 + GR12 * ST1 * ST1

¥(1, T2) = ¥(1, T) + GR1 - U(1, T) * ¥(1, T)

REM IF Y(1, T2) > STOMAX THEN Y(1, T2) = STOMAX

REM Local (in time) profit calculation.

PRO(T) = P(NPRI, T) * U(1i, T) * ¥(1, T)

NEXT T

REM Calculation of the total present value of the profits except for
REM the value of the finally available resources. The value PROFIT
REM includes the profits of all price series in the experiment.

FOR T = 1 TO (TMAX - 1)
PROFIT = PROFIT + DISC(T) * PRO(T)



NEXT T
NEXT NPRI
AOBJ = PROFIT

A9



Al0

i LT I T T T T T T T A T T

REM PROGRAM ADAPTG.BAS

REM THE PROGRAM ESTIMATES THE EXPECTED FRESENT VALUE

REM OF ADAPTIVE HARVESTING WITH A SUGGESTED HARVEST FUNCTION.
REM SIMULATION OF STAND DENSITY AND HARVEST PATH

REM OVER TIME IN THE PRESENCE OF STOCHASTIC PRICES.

REM LOHMANDER PETER 91-12-11, 11.51
REM dkdhhkhhahhdhkhhhhhkahhhknkhhohrhhhAhhdhhhddhthns

CLs
5 PRINT Mkkk bk ki kkk kb k ko kR kA ke kR kA Ak ke ki khkkhk kA hdhh k"
RANDOMIZE

DIM P(100), U(100), H(100), ¥(100), DISC(100), PRO(100)
DIM PROMAT (100)

INPUT "Number of tests in the experiment = "; TESTSUM
INPUT "Rate of interest (%) = "; IR
¥(1) = 50

INFUT "Relative standard deviation in price process (%) = "; STDEV

INPUT " ASSUMED value of the variable above = "; STDEVA

INPUT "If you want no time consuming graphs, then type 1.", NOGRAFH

INPUT "If you want to open the plotter opticon, type 1.", PLOPT

IF PLOPT = 1 THEN OPEN "COM1:9600,E,7,2,RS5,CS65535,D5,CD" FOR OUTPUT AS #1
CS5T =0

INPUT "constant stock policy (l=yes) = "; CST

IF CST = 1 THEN INPUT "Suggested controlled stock level = "; CONSTO

REM #kkdkkkhhkxkhdhbdhhhdhhhhhdhhhddhbdbhhdhdddbhdbhkhdhhddhhdodhtdbdd

REM Calculation of the optimal adaptive harvest function parameters.
Rm [ 1ttt sttt st 22222 S22 22 2223222 22222222 22ttt

PAR]1 = 1.155 - .1888 * IR + .01271 * STDEVA
PAR2Z = -2.303 - .02999 * STDEVA
PAR3 = 1.397 + ,384 * IR - .01544 * STDEVA

A =PAR1 * 100: B = PAR2 * .1: C = PAR3 * .01

CO =C * (100 * B = A)
CP = C
CY =-B * C

FOR TEST = 1 TO TESTSUM

REM #dkdkdkdhkhdhhkhkrhhdtthrdhhdttdrrdtbhhhtdddrndrrdind

REM Generation of stochastic prices N(100, STDEV-2).
REM dadkdhdhdwdkbhkbrdhhdrdbbhhiddbddtihddhkrdhhbhdirathdhhdd

R = IR / 100

FORT = 1 TO 60

PRAN = O: FOR I = 1 TO 12: PRAN = PRAN + RND: NEXT I
P(T) = 100 + (PRAN - §) * STDEV

DISC(T) = EXP(-R * T * 5)

NEXT T

RIEM e vk e e o s o e o o o o ok e ok ol ok ook o ok e oo o o ok ok e ok o ok ok ol e e ok ook e e e o e o e e ek e ke e e ke sk ke o

REM Simulation of the stock, prices and adaptive harvesting over a

REM 60 period horizon. Each period represents 5 years.
REM #*&dtkdtkdddbthbdhddddhhhddhkhrrhhhbhhhhhhhhdbdhhhhhdhhddhddhs

FOR T =1TO (60 - 1)
=T+ 1

U(T) = CO + CP * P(T) + CY * ¥(T)
IF U(T) < 0 THEN U(T) = 0
IF U(T) > 1 THEN U(T) = 1



All

REM If CST = 1, then a deterministic stock level policy is used.
IF CST <> 1 THEN GOTO 22

RSTODEY = (Y (T) =- CONSTO) / Y(T)

U(T) =0

IF RSTODEV > 0 THEN U(T) = RSTODEY

22 REM

H(T) = U(T) * ¥(T)

STL = ¥(T) * (1 - U(T))

GRL = .3 + .2 * ST1L - .0005 * ST1 * STl
Y(T2) = Y({T) + GR1L = U(T) * Y(T)

PRO(T) = P(T) * U(T) * ¥(T)

NEXT T

PROFIT = 0

FORT = 1 TO (60 - 1)

PROFIT = PROFIT + DISC(T) * PRO(T)
NEXT T

PROMAT (TEST) = PROFIT

IF NOGRAPH = 1 THEN GOTO 33
REM I LI I I e s e s e oS R R R R 22 22 R R 2 4 0 2 2 b bbbl
RFM The stock, the price series and the harvest level are plotted

REM on the screen together with more information.
REM e e e T P I T T A A bR bR e R LA LR AL A R R S R R R b b bbbl b bl

CLS

SCREEN 9

PRINT "RATE OF INTEREST = "; IR; ™ %."; " TOTAL PRESENT VALUE = "; PROFIT
PRINT "STOCK = GREEN, PRICE = WHITE, HARVEST = RED. ";
PRINT "T = 0,.,200 YEARS. "

STOMIN = 1000: STOMAX = 0O

FORT =1 TO 40

IF ¥Y(T) > STOMAX THEN STOMAX = ¥Y(T)

IF ¥(T) < STOMIN THEN STOMIN = Y(T)

NEXT T

PRINT STOMIN; " <= STOCK LEVEL <= "; STOMAX

PRINT ™"
LINE (0, 230)-(640, 330)
LINE (10, 100)-(10, 350)

COL = 2

FOR T2 = 2 TO 40
TL=T2 - 1

X1l = Tl: X2 = T2

¥1 = ¥(T1l): ¥2 = ¥Y(T2)

LINE (10 + X1 * 15, 330 - ¥1)-(10 + X2 * 15, 330 - ¥2), COL
NEXT T2

FOR T2 = 2 TO 40

TL=1T2 -1

X1 = T1: X2 = T2

¥1 = P(T1): Y2 = P(T2)

LINE (10 + X1 * 15, 330 = Y1 * .2)—(10 + X2 * 15, 330 - ¥2 * .2)
NEXT T2

COL = 12

FOR T2 = 2 TO 40
Tl =T2 - 1
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X1 = T1: X2 = T2

Y1 = H(T1): Y2 = H(T2)

LINE (10 + X1 * 15, 330 - ¥1 % 1)-(10 + X2 * 15, 330 - Y2 * 1), COL
NEXT T2 '

INPUT XX

IF PLOPT <> 1 THEN GOTO 44

INPUT "If you want to send the graphs to the plotter, then type 1.", PLNOW
IF PLNOW <> 1 THEN GOTO 44

FEM #hdkdkdddhdddbbodddddbdbdbdbhbdhddbkdadddbhbhkdbatbddddbddbddddhdddddahdhd

REM Here, it is possible that the graphs are send to the plotter.
REM #%kdkdkdkdkdkdhhkdddkdbhddhhhdhdddhdddddddhbdhddhhddbtbdhkdhkdhttdhdh®

PRINT #1, "LO."
113+ R N RN I et cisenra

..............................

E$ = CHRS(3)
PRINT #1, “M250,1900,"
PRINT #1, “S100,Q80,"
PRINT #1, "R900,I93,"
PRINT #1, "P STOCE™; ES$
PRINT #1, "M250,1200,"
PRINT #1, "R900,I93,"
PRINT #1, "PPRICE"; E$
PRINT #1, "M250,400,"
PRINT #1, "R900,I93,"
PRINT #1, "P HARVEST"; E$
PRINT #1, "MB0O,150,"
PRINT #1, "“RO, I23,"
PRINT #1, "PYEAR"™; E%
PRINT #1, "A"

BN oovvin o o i i e e P P
REM The parameters and present values are printed.
BEM oo vrarssennsrremesrsaabiasansanssssssnasdasas

PRINT #1, "S25,020,"

PRINT #1, "M400,50,"

P2 = 0: FOR TT = 1 TO 40: P2 = P2 + DISC(TT) * PRO(TT): NEXT TT

PRINT #1, "P(r, S, SA, PV) = ("; IR; ","; STDEV; ","; STDEVA; ", "; P2; ")"; E$

REM The scales are printed.
REM ..icesnacnnanaannananas

PRINT #1, "S50,040,"

PRINT #1, "M300,1900,": PRINT #1, "P 0O"; ES
PRINT #1, "M300,2100,": PRINT #1, "P 100"; ES
PRINT #1, "M300,2300,": PRINT #1, "P 200"; ES
PRINT #1, "M300,2500,": PRINT #1, "P 300"; E$

PRINT #1, "M300,1200,": PRINT #1, "P o"; ES
PRINT #1, "M300,1400,": PRINT #1, "P 100"; ES
FRINT #1, "M300,1600,": PRINT #1, "P 200"; E3

PRINT #1, "M300,400,": PRINT #1, "P or;: ES
PRINT #1, "M300,600,": PRINT #1, "P 100"; ES$
PRINT #1, "M300,800,": PRINT #1, "P 200"; ES$
PRINT #1, "M300,1000,"™: PRINT #1, "P 300"; E$
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PRINT #1, "M450,300,": PRINT #1, "P 0"; ES$

PRINT #1, "M700,300,": PRINT #1, "P 50"; E$
PRINT #1, "M950,300,": PRINT #1, "P100"; ES
PRINT #1, "M1200,300,": PRINT #1, "P150"; ES
PRINT #1, "M1450,300,": PRINT #1, "P200"; ES$

B oo me v o e e e e S R
REM The stock dlagral axXes are plotted.
m lllllllll s E R E A AN R E SR A e eaee

PRINT #1, "M500,1900,"

PRINT #1, "X1,250,4,600,10"; ES
PRINT #1, "M500,1900,"

PRINT #1, "X0,100,6,1000,10"; ES

REM. i iinssl ol e wm a o ot

REM The stock path is plattad
moo-no--------------on...

PRINT #1, "M"; (500 + 1 * § * 5); (1900 + ¥(1) * 2)

PRINT #1, "D";

FOR PERPLO = 1 TO 40

PRINT #1, (500 + 5 # 5 * PERPLO); (1900 + Y{PERPLO) * 2);
NEXT PERPLO

BEM . iisasvanisaisesvssmbevansssanasisss

PRINT #1, "M500, 1200,"

PRINT #1, "X1,250,4,400,10"; E$
PRINT #1, "M500,1200,"

PRINT #1, "X0,100,4,1000,10"; ES
REM .unvvsssvsnssussscnannanas

S e T L T R
PRINT #1, "M"; (500 + 1 * 5 # 5); (1200 + P(1) * 2)

PRINT #1, "D";

FOR PERPLO = 1 TO 40

PRINT #1, (500 + 5 * 5 # PERPLO); (1200 + P(PERPLO) * 2);
NEXT PERPLO

BEM e A S D e e W e TR e T
REM The harvest diagram axes are plotted.
m lllllll B & =R k=R E NS EF S E NS S EEE s s mE s s

PRINT #1, "M500,400,"

PRINT #1, "X1,250,4,600,10"; E$
PRINT #1, "M500,400,"

PRINT #1, "X0,100,6,1000,10%; ES$

BEM . riismasesniaieksne s
REM The harvest path is plotted.
REM ..coccnncunanas e e e g

PRINT #1, "M"; (500 + 1 # 5 * 5); (400 + H(1) * 2)
PRINT #1, "D";

FOR PERPLO = 1 TO 40

PRINT #1, (500 + 5 * 5 * PERPLO); (400 + H(PERPLO) * 2);
NEXT PERPLO

44 REM

CLS

PRINT " HARVEST (Y-AXIS) AS A FUNCTION OF PRICE (X-AXIS)"
PRINT " Rate of interest = "; IR; ™ %."

LINE (0, 330)-(640, 330)
LINE (10, 100)-(10, 350)
LOCCOL = 2

FORT = 1 TO 40

X = P(T)
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Y = H(T)
CIRCLE (10 + 2 * X, 330 — 2 * ¥), 5, LOCCOL
PAINT (10 + 2 * X, 330 —2 * Y), 13, 2

NEXT T :

INPUT XX
33 REM
NEXT TEST

PROFSUM = 0

FOR TEST = 1 TO TESTSUM

PROFSUM = PROFSUM + PROMAT (TEST)
NEXT TEST

PROFAVE = PROFSUM / TESTSUM

PROF2 = 0

FOR TEST = 1 TO TESTSUM

PROF2 = PROF2 + (PROMAT(TEST) - PROFAVE) ~ 2
NEXT TEST

PROFDEV = (PROF2 / (TESTSUM - 1)) *~ .5

PRINT * AVERAGE PRESENT VALUE
PRINT " SAMPLE STANDARD DEVIATION
MEANDEV = PROFDEV / (TESTSUM * .5)

PRINT "™ STANDARD ERROR OF AVERAGE PRESENT VALUE
PRINT nm

INPUT XXXX

GOTO 5

L
r

"
r

FROFAVE
PROFDEV

HEANDEV



