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PREFACE

Since 1975, the Society of American Foresters' Systems Analysis Working Group
has sponsored symposia with increasing frequency as the number of participants
and the field itself has grown. Previous symposia were held in Athens, Georgia
1975 and 1985; Asilomar, Pacific Grove, California 1988: and Charleston, South
Carolina 1991.

The conference held at the Austral University in Valdivia, Chile in 1993 is the first
time it has been held outside the United States. Seventeen countries were
represented by 125 attendees including: Canada, Austria, Argentina, Australia,
New Zealand, Guatemala, Mexico, Finland, Norway, Sweden, Denmark, Peru,
Slovenia, Brazil, Korea, United States, and Chile. Seventy-one presentations were
given.

We would like to thank those who presented special topic tutorials and
conferences: ;

Rene Alfaro, Canada

Modeling forest pest and diseases
Peter Lohmander, Sweden

"Adaptative decision-making in forestry
Marku Kallio, Finland

Equilibrium models in forestry and forest industries
Douglas Brodie, USA

Silvicultural optimization at the stand level
David Martell, Canada

Economics and operations research in fire management
Bruce Bare, USA

Multicriteria decision-making in forest management

Prominent among program and operatf'ona! leadership were Andres Weintraub,
Antonio Grass, Beatriz Rojas and Clark Row.

A new feature of this symposium was simultaneous English/Spanish translation for
half the presentations. A 4-day tour of industries, natural and exolic forest, nursery
and field research areas, commencing in Valdivia and ending in Concepcion,
provided a technical and social capstone to the trip.

In assessing technical evolution and trends, this meeting's presentations show
increasing emphasis on integer and spatial approaches with links to geographic
information systems, stochastic modelling and adaptive control, and evolution of
optimization and heuristics to handle problems of increasing complexity and
dimensionality. The range of applications -industry, fire, wildlife, inventory, social
forestry. along with silviculture and harvest scheduling— are important links to all
fields of resource management modelling and economics.

We would like to thank our industrial sponsors and the professional forest resource
and academic institutions in Chile that contributed to this symposium.

We look forward to the next symposium now scheduled for September 1994.

Gonzalo L. Paredes V. and J. Douglas Brodie
Program Committee



THE ECONOMICALLY OPTIMAL NUMBER OF PLANTS, THE DAMAGE
PROBABILITY AND THE STOCHASTIC ROUNWOOD MARKET.

Peter Lohmander

Swedish University of Agricultural Sciences, Faculty of Forestry,
Dept. Forest Economics, S-901 83 Umed, Sweden

Abstract

The purpose of this paper is to
determine the economically optimal
number of plants in a plantation and to
investigate how this is affected by the
plant survival probability, the
roundwood price risk and other
parameters. The objective function is
the expected present value. The future
roundwood prices are described as a
stochastic process. Future harvesting
will be optimal and adaptive,
conditional on future price
observations.

The optimization problem is
analytically and numerically .
investigated. Several new qualitative
results are reported, such as: If the
optimal number of plants initially is
low (high), then the optimal number of
plants decreases (increases) if the
death probability increases marginally.
In order to solve the optimization
problem, it is necessary to know
several gqualitative and gquantitative
properties of forest growth. In
particular, it is very important to
know the functional form of the growth
function and the signs of several
derivatives. For this reason,
empirically supperted optimization is
made at two levels.

First, the optimal investment intensity
in Norway spruce plantations in
northern Sweden is investigated as an
empirically supported test case. Plant
survival is assumed to be random.

Then, via adaptive optimization, it is
shown that the optimal number of
plants, and the expected optimal ]
present value, are increasing functions
of the future price risk., In order to
support the multi stage adaptive
optimization, a specific growth
function is estimated. This is a
nonlinear Markovian growth function
with the number of stems and the volume
per hectare as independent variables.
It turns out that all estimated
coefficients have biological
interpretations and are strongly
significant.
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1. General Introduction to
Reforestration Ecocnonmics

Reforestration is an economic issue.

An economic issue, on the other hand,
can contain several ingredients. We may
in the reforestration issue consider
costs, revenues, the capital market,
physical damages and economic risks. We
may also, in case this is of particular
interest in the area, consider
environmental questions. Environmental
guestions, on the other hand, is a
complicated set of issues in itself.
Here, we may consider the value of the
forest and the environment to the human
observer, the value of the forest as a
wildlife habitat and hunting ground,
the value of the preservation of
different species and ecosystems etc..

In a more restrictive sense, excluding
the environmental aspects, we may
consider the reforestration issue as a
classical investment problem. The
reader should be well aware that
present value maximization of the
investment is appropriate in that case
since this leads to maximization of the
intertemporal consumption budget.
Compare Johansson and Lofgren (1985,
Ch. 1) or any book on investment
theory.
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In the work of Johansson and L&fgren
(1985, Ch. 4), the forest investment
problem is analyzed in a particular
sense: The cost of the investment is
constant. The physical development of
the forest stand is not described as a
function of the investment intensity,
the number of plants per hectare, or

the investment cost. Hence it is not
possible to optimize the investment
intensity. The problem under
investigation is on the other hand to

‘optimize the harvest age, the rotation

age. That is the classical problem of
forest economics.

In case we do not think that we already
know everything about the future, which
we of course do not, then we should
consider risks. The reader is
recommended to study Rothschild and
Stiglitz (1970, 1971) and Hey (1981).
Many general effects of risk are
presented by that authors. As long as
the investment represents a marginal
fraction of the wealth of the investor,
which is mostly the case when we
discuss a particular reforestration
area, then one can show that
maximization of the expected present
value is a appropriate. This issue and
several related questions are analyzed
in Lohmander (1987).

For this reason, the analysis in this
paper will be entirely based on
maximization of the expected present
value. Of course, one may widen the
scope of the analysis and include
restrictions of different kinds that
reflect particular industrial needs,
availability of personel and
transportation capacity. It has been
very popular to analyze forestry and
forest sector issues with highly
detailed numerical models. On the other
hand, the time it takes for the typical
forest stand to grow up and to be
harvested is usually very long. In
Sweden, a typical rotation age is 100
yYears. That age is usually higher than
the economic optimum.

We should be aware that we can not make
reliable detailed multi decade
predictions of technology inventions,
of the taste of future consumers, of
the size of the labour force or of
political changes in our country and
countries that influence our
international trade.

Thus, there is no obvious reason why we
should consider such predictions and
associated restrictions when we study
the reforestration problem. We may
regard the relevant fraction of the
future state of the world as the timber
prices and harvesting costs. These, we
regard as stochastic processes.

2. The present solution and the
scientific literature

Let us make a short investigation of
the presently applied principles in
swedish reforestration. Then, we will
look closer into the latest scientific
results.

2.1. The administrative solution to the
reforestration problem

What number of plants should we select
in a forest plantation? What species or
species combination should we choose?
These are two of the more basic
questions of forest management. Of
course, depending on the main purpose
of the plantation, several suggestions
and rules can be made. In swedish
forestry, as one example, the target
according to law, has been to obtain at
least a predetermined number of stems
of a particular species in the young
forest. If, for some reason, some
damage has occured, then it has often
been necessary to replant the area.
There is no available economic
background to the different and very
detailed restrictions in the present
swedish forest act. Most likely we will
very soon have a completely new forest
act in Sweden.

Officials from the Swedish Board of
Forestry investigate the plantations
when these reach a particular age. If
the investigators find the number of
stems to be too low according to their
standards, they order the land owner to
replant the area. If the land owner
does not obey this order, the Board of
Forestry undertakes the operation and
sends the bill to the land owner.



In some cases, it has been considered
necessary to take away alsoc the plants
that were not damaged, just in order to
obtain a new stand in which all the
plants have the same age after the
replantation. In some cases, some years
after the plantation of Scots pine, it
has been found that the young forest
contains only Norway spruce and birch.
The reason is often that there is a
dense moose population in the area and
they eat young pine. Partial natural
regeneration of Norway spruce and birch
is very common in Sweden thanks to
seeds from neighbour stands.

In such cases, one can often show that
it would be better (with respect to the
expected present value of the
investment) to accept the observed
young spruce/birch forest, even if this
is not very dense, than to start all
over again. Furthermore, if we start
all over again, the result is once
again uncertain. The Board of Forestry
officials sometimes order the land
owner to take away the spruce and birch
and create a new pine plantation.

2.2. Relevant reforestration literature

The fundamental questions in forest
economics, such as how many plants
should we place in the ground and when
should we harvest, have in the latest
decade been given high attention in the
literature. During the earlier years,
the assumption of a deterministic world
was usually made. Later on, the insight
that the future development of prices
and damages is not yet known, was taken
into account.

In some articles it was assumed that
the future development was indeed
uncertain but that all decisions were
taken at once. In some other studies it
was assumed that several possible
scenarios could occur. For each
scenario, on the other hand, it was
assumed that the decisions over time
were optimized conditional on perfect
information about all details of that
scenario. We may call these studies
"non adaptive", since it is not assumed
that future decisions are optimized
conditional on future information,
which is not yet available.

Some of the classical nonadaptive
studies in the areas of: optimal
investment, thinning and rotation age,
are: Chang (1983), Brodie and Haight
(1985), Johansson and L&fgren (1985),
Nautiyal and Williams (1990), Reed and
Apaloo (1991), Solberg and Haight
(1991), Taylor and Fortson (1991),
Teeter and Caulfield (1991), Filius and
Dul (19%2), Gove (1992), Jonsson and
Jonsson (1992) and Valsta (1892).

Several of these papers include
management guidelines and solutions
that may be very useful when we want tc
compare our adaptive solutions to the
deterministic equivalents. Several of
the results hold alseo in adaptive
situations where the level of
uncertainty is low. In many cases,
however, we should be aware that the
solutions are very different from the
earlier solutions, when we accept that
the future is not yet perfectly known
and that we will take advantage of the
future information when we take our
future decisions. The adaptive approach
has become more and more common in
forest management during the latest
years. Risvand (1976) wrote an early
paper in which the future is described
as stochastic and the future decisions
are optimized conditional on future
information.

Risvand used a discrete stochastic
Markov chain to describe the price
movements. In an analysis by Lohmander
(1985), the future prices are
distributed according to continuous
probability density functions. The
pulse harvesting problem, optimal
rotation in forestry, was investigated.
It was found that new properties of the
growth function are important when we
use adaptive optimization of the
harvest year. In a stochastic timber
market, it is important to create
"harvest year flexibility". It is
important that the forest stand can
survive unexpectedly high stand density
and age when we sometimes have to wait
for the timber price to increase. This,
in turn, affects the optimal selection
of species in reforestration.

Then, the author extended the analysis
to continuous harvesting problems and
situations where stochastic windthrows
take place. Spatial considerations
became important..In later years, a
number of studies in the field of
adaptive forest management were
conducted by the author, most of which
may be found in the reference list.

Several other authors have also started
to use the adaptive approach and found
it very interesting and useful in
forest management. Among such papers,
we find: Kaya and Buongiorno (1987,
1989), Brazee and Mendelsohn (1988),
two impressive articles by Haight
(1990) and (1991) and by Carlsson
(1992). Gong (1992) has taken the first
steps to extend the adaptive analysis
to cover multiobjective optimization.
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3. structure of the paper

The optimal number of plants in a
forest plantation is under
investigation in this paper. The
objective is to maximize the expected
present value of the investment.
Economic parameters such as the rate of
interest in the capital market, the
cost per plant and the roundwood price
are explicitly treated. The production
function is discussed in detail. Two
phencmena of great economic importance
will be considered. These are physical
damages and stochastic markets.

In section 4., the optimal number of
plants will be analyzed within a single
decision problem: First you decide the
number of plants and then you follow
your plan, performing the harvest at a
predermined point in time.

In section 5., we look deeper into the
consequences of a changing plant
survival probability. In section 6.,
the optimal intensity in Norway spruce
plantations in northern Sweden is
determined.

In section 7., stochastic timber prices
and rough market adapted harvesting are
introduced in the following way: When
the "harvest point in time" occurs, the
timber price and the variable
harvesting cost are observed. If it is
found that it is more profitable to
harvest than to leave the stand in the
forest for ever, a harvest takes place.
otherwise, we just forget the area.

In sections B. and 9., a multi stage
market adapted decision model is
introduced. As always the main question
sconcerns the optimal investment
intensity. The harvest section of the
problem is however dynamic: The
decision at a particular point in time
is to accept the observed price and to
harvest the stand or to let the stand
grow at least one more period.

4. Optimal intensity in the single
decision problem

Equation (1) is the present value
optimization problem of this section. 7
denotes the present value and n is the
(initial) number of plants per hectare.
The costs contain one fix part, F, and
one variable cost, en. ¢ is the
marginal plant cost. At time t, perhaps
100 years after the investment, it is
time to harvest. The discount factor is
written in exponential form where r is
the rate of interest in the capital
market. P is the "net price", a short
notation for "price minus variable
(relevant harvesting and

trgnsportation) costs per cubic metre™.
L is the value of the land released for
sales or other purposes after harvest.
V denotes the volume per hectare if the
number of survived stems, N, is 2000.
U(xn) denotes the relative production,
where x is the survival probability of
the plants in the first dangerous years
of the life of the plantation. Hence,
U*V is the volume per hectare in the
stand. N = xn.

max w(n) =-F-cn+e ¢ [PU(xn) V +L] (1)
n

We assume, with strong empirical
support, that U'(N) > 0 and

U''(N) < 0. The assumption of
decreasing marginal return to scale is
very commeon also in most other economic
theory.

Note in particular that (1) is
consistent with a forest investment
with no thinnings. One reason is that
forestry in many areas is more
profitable without thinnings. This has
been shown by Wieslander (1986) and by
Bjurulf and Freij (1986).

Furthermore, the very dominating
fraction of the profits from forestry
comes from the final fellings also in
traditional Swedish forestry with
thinnings. The suggested model will
also make the qualitative results easy
to obtain and to interpret.
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The relative production function.
Sweden.

The graph shows the relative yield
level, U, for different numbers of
stems per hectare, N. (The rotation age
is 80 years.)

Solid line = Scots pine (Pinus
silvestris), site index = T24.
Dotted line = Norway spruce (Picea
abies), site index = G32.

Source: Elfving (1985).
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The relative production function.
Norway. The graph shows the relative
yield level, U, for different numbers
of individuals per hectare, N. The
species is Norway spruce (Picea abies).
solid line = regular spacing. Dotted
line = irregular spacing. Source:
Braastad (1983).

Let us optimize the initial number of
plants. We take the first order
derivative and set this equal to zero
in (2). From (2) we get (3). (3) is
very useful since we can instantly draw
a graph and determine the optimal
number of plants. In Figure 3. we see
how this is done:

i!-. = - -rt .E[_’ =
37 c+e PaNxV, 0 (2)
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— B — = 3
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Figure 3.
Graph for determination of the optimal

number of plants. The graph is based on
t* . result reported in (3). We find
that the optimal number of plants is an
increasing function of the net price,
P, and the site index (V is an
increasing function of the site index).
The optimal number of plants is a
decreasing function of the marginal
plant cost, c, and the rate of
interest, r.

(4) shows that the solution is a unique
maximum.

3in -rt 82U 2
ot - S ] P—x%V,. < 0 4
&n? SN2 ¢ o

Suppose that we make a change in an
arbitrary parameter z and adjust the
optimal number of plants accordingly.
(5), (6) and (7) show how we can
determine the qualitative effects of
parameter changes on the optimal
intensity decision. We simply have to
determine the signs of a series of
mixed second order derivatives.

s ST &2g"
3,7 2" Bmbz

[5:)
dn® _ _ \dnbz (6)

dz =0 {5)

. 2
sof ) - sl 22)

Let us determine the signs of these
mixed second order derivatives:

8x = - 8
. = - -re vV ’)
3nb te .P—B—x e <0 (



Fsp % e’ 8 {10}
8n _ erepy |80, 820 1> (31)
5néx PV{GAI N2 “]2 v

Sk = erep2x> 0 12

6n6V (22}

As a consequence of (7) and (8) - (12),
a number of qualitativa results can be
stated. Compare also Flgure 3. The
optimal number of plants is a
decreasing function of the marginal
plant cost,

Sn* <0 (13)
bc

a decreasing function of the rate of
interest

<0 (14)

dn-
51

and an increasing function of the net
price, P.

&n* 15)
T >0 (

In the general case it is not clear if
the optimal number of plants increases,
is unchanged or decreases if the plant
survival probability increases! This
result may seem strange to the reader
who is used to definite answers to this
guestion. This phenomenon will be
analyzad and explained in greater
detail in the following section.

0 (16)

Al

én
dx

If the site index increases, we should
have more plants per hectare.
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5. Intensity and the survival
probability = A deeper investigation

Now, we will make a deeper
investigation of the effects of a
changing survival probability, x. In
section 4. we found that the optimal
investment intensity increases, is
unchanged or decreases if the survival
probability increases. Of course, it is
important to understand more about this
perhaps unexpected result. In order to
obtain such understanding, we may start
by investigating a particular case. In
(18) , we assume that the relative
production function is guadratic. For

obvious reasons, a > 0, b < 0.
U(N) = Ulxn) = alxn) + b(xn)2 (18)

(18) may be rewritten as (19).
Ulxn) = axn + bx?n? (19)

The contribution of the marginal plant,
n, is given in (20).

= ax + 2bx?’n (20)

010
Sig

If we set the derivative (20) equal to
zero, we may determine the number of
plants which maximizes the relative
production function. This is determined
in (21). No doubt, the soclution is
unigque. This expression will soon be
used.

4

e 21
2bx (21)

no-_

The mixed seccond order derivative of
the relative production function with
respect to the number of plants, n, and
the survival probability, x, is given
in (22). We find obvious similarities
between (20) and (22).
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Assume, for a while, that every plant
survives. Then, we get:

(xe1) = Y = a + 2bn (23)

oy ww BT o 24
{x=1) 35 a + 4bn (24)

In this situation where x = 1, the
marginal relative production function
(23) is strictly positive for values of
n < =-a/2b, equal to zero for n = -a/2b
and strictly negative for n > -a/f2b.
The functions (23) and (24) have the
same strictly positive value for n = 0.
Furthermore, the negative slope of (24)
in the n dimension is 2 times the
negative slope of (23) in the same
dimension. We may conclude that the
sign of (24) can be described via (25),
(26) and (27).

- N L[ 8% (25)
et ne) = (2259
st e [0 (26)
[X Rl 2] (ﬁnéx 0] i

(27)

- Ro| L[ 02U
[x-_l, H>T] [Embx(o)

We recall equation (11). Clearly, when
¥ increases, §U/én increases, is
unchanged or decreases. Now, we
reconsider (7), (25), (26) and (27).
Obviously we can draw the conclusions
presented in (28), (29) and (30). We
may conclude our latest findings in the
following way: If the optimal number of

. plants is low, then the optimal number
of plants decreases if the death
probability increases. If the optimal
number of plants is high, then the
optimal number of plants increases if
the death probability increases.
Compare Figure 4..
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The "common sense" solution that we
should always compensate for increasing
plant mortality by increasing the
number of plants is wrong.

The marginal plant cost, the timber net
price, the rate of interest in the
capital market, the site index and the
initial survival probability determine
in which direction we should change the
optimal number of -plants in the
presence of increasing plant mortality.

. o JTo| L |8n° (28
(x1,n<2) [6x>o) )
= 'sﬁ—bﬁn.u 29

o )= (2] e
(30)

Figure 4.

Changes in the optimal number of plants
when the death probability increases
from 0 (the survival probability x
decreases from 1). We observe that the
optimal number of plants increases
(decreases) if the initially optimal
number of plants is high (low).

6. The optimal intensity in Norway
spruce in northern Bweden

This section will concentrate the
attention to Norway spruce plantations



in northern Sweden. We will assume that
thinnings are not profitable (which
often can be shown to be the case in
the area) and are not undertaken. In
any case, the optimal number of plants
per hectare is low according to the
preliminary optimizations. For this
reason, it is obviously physically
possible to avoid thinnings if this is
desirable from economic points of view.

L . .

Clearly, one could utilize complicated
and detailed growth functions. However,
the intention of this section is to
make a complete analysis of the problem
in a way which is easy to control and
modify by the reader. All used
assumptions are based on information
which is found in the reference list.
The choice of all parameter wvalues in
this section will be discussed in
detail.

The sensitivity of the optimal
investment intensity to the different
parameter values will be analyzed. It
will turn out that the applied
transparent approach is not obviously
worse than optimization based on very
complicated growth functions. It is not
very critical to the derived results if
we make some growth estimation errors
(The growth model is simple and rough
compared to many modern growth
models.). It is very important, on the
other hand, to make precise estimations
of the economic parameters, in
particular the net price and the rate
of interest. .

6.1. The relative production function

Now the time has come to look closer
into the real world situation. The just
presented methods will be applied to a
plantation in northern Sweden. First of
all we have to determine the functional
form and the parameters of the relative
production function U(xn). We assume
that the function estimated in Norway
by Braastad (1983), shown in

Figure 2., is relevant also in Sweden.
We will assume that the distribution of
plants after the initial death of some
young plants is random and that the
stand can be described as "regularly
spaced" according to the definition by
Braastad.

Braastad also reports a similar
function for irregularly spaced stands
which is slightly different. Of course,
that function may be used instead where
appropriate. One way to search for

approximating functions is to try
'poynomials of different degrees,
starting from the lowest possible
degree. It is essential to make the
polynomial approximation satisfy some
important properties of the original
function.

First, it is reasonable to let U = 0
when the number of stems, N, is 0. This
result is obtained if .there is no
constant in the polynomial.

Second, U has its maximum when the
number of stems is 2000. We let the
first order derivative of U with
respect to N be zero for N = 2000.
Third, since the maximum of U is 1, we
know that U should take the value 1
when N = 2000. These conditions are
sufficient to determine a second order
polynomial. In the following equations
in this section, n is expressed in the
unit 1000 plants per hectare. The
following function is found:

U, (xn) = 1(xm) - 2 (a)?  (31)

If we want to use a mcre flexible tool,
we have the third order polynomial.
Then, we need one more observation in
order to determine the function. We
select the value of U when there are
1000 stems per hectare. According to
Figure 2., U(1000) = 0.874. The third
order polynomial becomes:

Uy(xn) = 1.496 (xn) - 0.746(xn)? (32)
+ 0.124 (xn)?

However, since the behaviour of the
function is important to describe in
detail for low values of the stand
density, we want to use the fact that U
takes the value 0.650 when there are
500 stems per hectare. U(500) = 0.650.
The fourth order polynomial becomes
(33}

U, (xn) = A(xn) + B(xn)? (33)
+ Clxn)?+ D(xm)*

The parameters are given in (34).

A =2.0151095, B = -1.7842, (34)
C=0.772882, D= -0.1297725
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The latest function (33) is found to
approximate Figure 2. very well. It is
selected for the coming analysis and is
found in Figure 5..
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Figure S.

The relative production function.
Approximation via a fourth order
polynomial.

The marginal contribution is (35).
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—— = Ax + 2Bxn
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(35)
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The marginal

contribution is plotted in
Figure 6.
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Figure 6..

The marginal contribution to the
relative production.

The first derivative of the forth order
polynomial approximation.
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We may compare the qualitative
properties of Figure 6. to those of
Figure 4.. In both cases, the different
functions representing different levels
of plant survival, intersect. Hence,
also in this more complicated case with
an empirically justified fourth order
approximation of the relative
production function, this is true:

- If the optimal number of plants is
low, and the survival probability
decreases marginally, then we should
have less plants.

- If the optimal number of plants is
high, and the survival probability
decreases marginally, then we should
have more plants.

What do we mean by "low" .or "high"
numbers of plants in this context?
Well, the answer is more complicated
than before. The boundaries can be
exactly calculated and given in
analytical form. It is much easier,
however, to look at the graphs in
Figure 6..

6.2. Other relevant empirical
information

As we recall from (3), when we optimize
the number of plants, we need to know
the values of the following parameters:
The marginal plant cost, c, the rate of
interest, r, the harvest age, t, the
net price per cubic metre, P, and the
volume per hectare, V, at the age of
harvest (if the number of plants that
survive is 2000).

The cost per plant

Andersson (1993) estimates that
marginal cost (per plant) is in
interval 1.60 SEK - 2.00 SEK in
northern Sweden. The value 2.00 SEK
holds for small reforestration areas
and 1.60 holds for large areas. The
cost of the plant only, included in the
marginal cost, is 1.00 SEK for the
species Norway spruce and Scots pine.

the
the

The reason for the economy of scale is
that efficient machines, which help the
labour to carry the plants, are
profitable to use and transport to the
site when the reforestration area is
large. Andersson (1993) states that the
marginal cost generally is higher in
the rest of Sweden.



The National Board of Forestry (1992,
Table 13.1) reports that the average
cost of artificial and natural
regeneration is 5 511 SEK per hectare
in sweden. If we include the cost of
site preparation, the average
regeneration cost is 7 347 SEK. This
information is not inconsistent with
the information gained from Andersson
(1993) since 2000 plants per hectare
represents a typical Swedish
plantation.

The time of the final felling

The National Board of Forestry (the
forest act) (1987) includes detailed
restrictions concerning the lowest
allowed age of the trees when the final
felling takes place. In the rest of
this section, we will assume that the
species is Norway spruce and that the
site index is typical in Nerthern
Sweden, G16. In this case, the trees
must not be harvested before the age of
120 years. When the rate of interest is
higher than 1%, one can mostly show
that the economically optimal rotatien
age is lower than 120 years. Hence, we
will assume that the harvest age, t, is
exactly 120 years in this example.

The volume per hectare at the time of
the final felling

Sveriges Skogsvdrdsférbund (1978), page
425, informs us that the total
production of a Norway spruce Gl16 stand
until the age of 120 years is 241 cubic
metre per hectare. Then, the total
thinning of 57 cubic metre is included.
The initial number of stems per hectare
is 1698. It is well known that the
total growth is only marginally reduced
via weak thinnings. Compare Figures 1.
and 2.. A rough estimate is that the
volume per hectare at the age -of 120
years is 250 cubic metre (if the
initial number of stems per hectare is
2000 and no thinnings are undertaken).

According to The National Board of
Forestry (1992), (Table 6.8) the mean
annual fellings in the period 85/86 -
89/90 were 9.9 million cubkic metres in
northern Sweden and 61.2 million cubic
metres in all of Sweden.

The forest land area subject to final
harvest (Table 6.9) was

48 000 hectares in northern Sweden and
184 000 hectares in all of Sweden
during the same period.
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We may divide the harvest volumes by
the harvest areas and get the following
ratios:

— Northern Sweden, 206 cubic metre per
hectare

= All of Sweden, 333 cubic metre per
hectare.

The net price per cubic metre in the
final felling

The National Board of Forestry (1992,
Figure 13.1) tells us that the
following costs and prices per cubic
metre were true in Sweden during the
harvest season 13990/91: Gross value =
290 SEK, Harvest cost = 127 SEK,
Stumpage value 163 SEK.

We will assume that the net price in
our example is 150 SEK per cubic metre.
In northern Sweden, the distance from
the forest stand to the industry is
usually large. The volume per hectare
is usually low. These are two reasons
why the costs per cubic metre on the
average are higher than in the rest of
Sweden.

Does the spacing matter very much to
the qguality? Does the quality influence
the price very much?

The National Board of Forestry (1992,
Table 11.1) shows that the price of
pine timber is reduced by 35% if the
quality is reduced from high (0S) to
low (V).

The price of spruce timber is only
reduced by 9% if the gquality is reduced
from high to low. The guality is mainly
determined by the size and number of
branches per log. It is not exactly
known how sensitive the gquality is to
the number of plants per hectare. In a
dense stand, we get smaller branches.
On the other hand, the logs will become
smaller. Furthermore, there are
indications that with low numbers of
plants per hectare (which are the
results of the preliminary
optimizations in this paper), marginal
changes in the spacing will not affect
the quality distribution very much. The
quality will be of the lower level in
any case.

In our example, where we study spruce,
the guality premium is, as mentioned,
only 9%. Hence, we will in the rest of
this section assume that the quality
effects of the spacing may be
forgotten.
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We should be aware that the net price
varies very much with the location. In
places very far from the mills, the net
price is close to zero or negative.
There, we should be aware that also
small changes in the net price,
according to Figure 3., strongly affect
the optimal number of plants. If the
net price changes with a particular
percentage, this influences the optimal
number of ‘plants exactly as much as if
the volume per hectare in the final
felling (with 2000 plants per hectare)
changes with the same percentage.

In distant places, where the harvest
and transportation costs are of the
same order of magnitude as the
revenues, also small absolute changes
in the price level cause dramatic’
relative changes in the local net
price. The local net price may often
change sign. We should, for these
reasons, accept the regional
differences and the importance of the
economic environment and adjust the
investment intensity accordingly. On
the other hand, which will be discussed
in the following sections, we can not
be sure that our predictions of the
future net price levels in different
regions are correct. The investment
intensities should be based on this
insight.

The rate of interest

The rate of interest is the most
difficult parameter. The fundamental
importance of this parameter to most
values and decisions in forestry, such
as the length of the rotation age, has
been discussed earlier by for instance
Lohmander (1950Db).

In the present example, we study prices
and costs in real terms. We should also
utilize the real rate of interest. In
different historical periods and in
different countries, the rate of
interest has taken very different
values. In our optimization, we should
as always in present value
calculations, use the rate of interest
of the best alternative investment.

The real rate of interest will in the
example (without any empirical

support!) be given the values 1%, 2%

and some marginal changes from these
values. If the best alternative gives
you more or less than 1% or 2% over a
120 year period, the relevant figure
should of course be selected.
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6.3. The optimal solution and the
sensitivity to the assumptions

Via (3) and Figure 6., we may derive
the results found in Table 1.

Opt # plants
Xx=
e r E 0.7 1.0

P Vv 4&0/&én 0.4

*10*-3

250
250
250
250
250
275

120
120
120
132
120
120

150
150
150
150
165
150

.18
.19
.20
.20
.16
.16

1830
1770
1700
1700
1980
1980

1380
1360
1320
1320
1500
1500

1180
1150
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A
e

120
120
120
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120
120

150
150
150
150
165
150

250
250
250
250
250
275

.59
.65
.75
.75
.53
.53

430
290
(100)
(100)
560
560

640
570
480
480
710
710
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NN NDND
.

]

Table 1.

The optimal number of plants per
hectare. Row 1 and row 7 are the
"standard cases" where the parameters
suggested by the investigation
described in the text are used. In the
other rows, one parameter at a time has
been changed from the "standard case
value" by 10%.

Some of the results which we partly
find in Table 1. are the following:

The optimal number of plants is
extremely sensitive to the rate of
interest. If the rate of interest 3% is
used, the optimal solution is to plant
less than 100 plants per hectare. In
such cases, however, plantations in the
area are questioned. Seeds from
neighbour stands will most likely give
us a much more dense new forest. A
deeper investigation of the alternative
natural regeneration is strongly
suggested.

If the rate of interest changes from 2%
to 1%, the optimal number of plants
increases very much. A highly
interesting and perhaps surprising
conclusion, however consistent with the
gualitative analysis, is that:
If the rate of interest is 2%,
should have less plants if the plant
survival probability decreases from
100% to 40%. If the rate of interest is
only 1%, then we should have more
plants if the plant survival
probability decreases.

then we



All of the results from the qualitative
analysis in the earlier sections hold
also in the numerically specified
example of Norway spruce in northern
Sweden.

7. The optimal intensity and the price
risk

In this section, we will study a first
version of an adaptive optimization
model. The first stage decision is the
number of plants. When that decision is
taken, we are aware that the future
timber price may be higher, egual to or
lower than the present price. We assume
that the future price is distributed
according to a probability
distribution. The second stage decision
is: Harvest or leave the stand for
ever. The simple rule of the second
stage decision is that if the harvest
profit (including the released land
value) is positive, then we harvest.
Otherwise, we just leave the stand. In
mountain areas in particular, it
cometimes happens that the price is
lower than the harvest and
transportation cost per cubic metre. In
fact, there are always some
geographical regions where the costs
are at least as high as the revenues
from harvesting. The boundaries of
these regions however shift over time
as the world market prices, the infra
structure and the technology in
industry and transportation change.

r
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Figure 7.

Real net prices in Norway.

(Mean price - variable costs) deflated
by consumer price index (The year 1979
has the index 100.) , Norwegian crowns
per cubic metre. Assumptions: Norway
spruce, 35% high gquality timber, 30%
low guality timber, 35% pulpwood.
Source: Lohmander (1987).
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In'Figure 7., we observe that the net
price may change considerably over a
rotation period. Afterwards, we may say
that the high profitability in forestry
during the period 1950 to 1965 was
caused by the economic expansion and
building activities in Europe after the
second world war. However, in 1920, we
could hardly predict the second world
war and its economic consequences.

In 1973, we experienced the "oil
crisis". We could not predict the
behaviour of the oil cartel, the oil
crisis and the consequences for the
price of wood. Wood is an important
energy substitute.

Let us turn to the description of
prices as stochastic processes!

More explicitly, we assume that there
are s possible net price levels which
can be given the order 1,...,m,
m+l,...,s. The price levels 1,...,m are
below g and the rest of the price
levels are above p. (p is the value of
P which makes the term in the right
hand side bracket of (36) take the
value zero.) The probability of a
particular price level, Py, is denoted
by g,. The expected optimal present
value is given in (36).

max ®,{n) = -F-cn+
n

s (36)
+ @7t ) [PU(xn) V+Ligy

k=m+1

A (slightly restricted form of a) mean
preserving spread, compare Rothschild
and Stiglitz (1970), may be defined by

(37), (38), (39) and (40).
de(P) = g, dP, + g, dP, =0  (37)
1<Az<m ml1<BssS (38)
ga>0, g>0 (39)
dP, <0, dPy>0 (40)

The above equations imply that we take
some probability density from the lower
(left) part of the distribution, g,,



and move that further down (te the
left), dP,<0. At the same time we take
some probability density from the upper
(right) part of the distribution, dgg,
and move that to the right, dPg>0. The
expected price is not changed in the
process. By this method, it is possible
to define and describe increasing price
risk in'a practical way. We observe in
particular that the expected present
value, our objective function (36), is
not affected by the change in the low
price value. The high price shift, on
the other hand, affects the value of
the objective function,

The first stage (investment intensity)
first order optimum condition is given
in (41).

&x U = (41)
—2Lt = —cte TE—XV Pg, =0
on 3N °k2;1 £k
We observe in (42) that we have a
unique maximum.
82 2 = 4
_.ﬁ = e'rg_.b_Ux?V:E Pkgk <0 t 2)
5n? SN? k=ms1

From (7) we remember that we have to
derive mixed second order derivatives
in order to determine in what direction
the optimal number of plants is
affected by changing parameter values.
When we investigate the effects of
increasing price risk, (43) is
relevant.

1 -rtab

Clearly, the optimal number of plants
increases if the future price risk
increases, which is also stated in
(44).

én*
8P,

>0 (44)

How is the objective function affected
by increasing price risk? We have to
jnvestigate this via eguation (45). Let
@ be the sign of total derivatives!

ory _ dny 5wy &n° us)

95, 0B, on 0P,

However, since n is optimally chosen,
the second part of the expression (45)
is equal to zero. Hence, we have (46):

Ony

85, = e*tU(xn*) Vg, > 0 (46)

The interesting conclusions from this
section are that the optimal number of
plants and the expected present value
of the investment are strictly
increasing functions of the future
price risk.

If the future price happens to become
very high, then the marginal value of
the plant and the total profit become
high. If, on the other hand, the future
price becomes very low, then we may
just leave the stand. The harvest
profit (including the released land
value) is hence bounded from below by
the limit zero. Hence, the expected
present value increases from from
increasing price variability. In
mountain areas, far from the industry,
these issues and results deserve strong
attention.

8. The adaptive multi stage decision
problem

Now the time has come to approach a
more detailed description of the
available options. The intertemporal
structure of information and decisions
becomes important. We will assume that
the first stage decision, the
investment intensity, is of the same
kind as before. The harvesting
decision, on the other hand, is a
sequential, multi period problem. The
timber price (net price) is a
stochastic process which is
sequentially observed. This process is
stationary and time is discrete.

The time distance between the
individual periods in the problem is
sufficiently long to make sure that the
prices in different periods can be
described as independent random
variables. Figure 8. gives a modern
example of such a "random price series”
from Sweden.



We assume that we can approximate these
random prices by a discrete probability
distribution. The probabilities are
denoted by g. As in the latest section,
there are s different possible price
levels. The index of the price is k.
These possible price outcomes can be
ordered from the lowest (k = 1) to the
highest possible price (k = s).

In period t, we can select to harvest
or to wait at least one more period. We
can derive the optimal reservation
price, g, the price which makes the
present value of instant harvesting
equal to the expected present value of
waiting at least one more period. The
explicit derivation of that reservation
price will not be made in this section.
In earlier publications, such as
Lohmander (1987), (1988b) etc. such
derivations are made. In the numerical
section 9. of this paper, the
reservation prices will also be
derived.

Equation (47) contains a partly
simplified version of the relevant
optimization problem. (There, t is the
first period when harvesting is
possible.) The optimal reservation
price g is such that a < g < (e+l). If
we select to harvest, then we get the
present value of the harvest and the
released land value. If we wait at
least one more pericd, then we get the
expected present value in the next
period. That expected present value is
denoted by W.,;. The exact value of Weay
may be calculated via explicit
stochastic dynamic programming. That is
not necessary in this qualitative
discussion. Calculations of a similar
type can be found in Lohmander (1987),
(1988b) and elsewhere. In the numerical
section 9. of this paper, W, will be
numerically calculated via stochastic
dynamic programming.

=
max ®,(n) = -F—c:n+z W (n) g +
n kel

]
+« e°rt E {PkU‘,{XH) Vt"L]gg

k=g+l

(47)

considering the structure of the
problem, we may optimize the number of
plants. This is done via (48).

We should be aware that the derivative
of the expected present value in the
next period with respect to the number
of plants can be shown to be positive.
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Figure 8.
Real net round wood prices in Sweden
(price minus harvest cost per cubic
metre). The prices have been adjusted
via the consumer price index series to
the price level of 1990. The mean price
is 164.60 SEK and the standard
deviation (with 6 degrees of freedom)
is 24.30 SEK. Sources: Statistiska
Centralbyrdn (1991), The National Board
of Forestry (1992), Table 13.1.

Such derivations are however very page
consuming and will not be made here.
The intuitive explanation is simply
that if the number of plants increases,
the harvest profitability increases in
every future period. Hence, the
derivative should be positive.

ﬁ = -—C+i

k=1

dw,., (n)

an = +

. {48)
LA

+ Tty 1:'&--———“;’m/,g‘t =0
k=a+]l

In a similar way we may conclude that
the second order derivative of the
expected future present value with
respect to the number of plants is
strictly negative. This is the case
since the relative production function
is a strictly concave function of the
number of plants in every time periecd.

&%x, -
§n? Ik

i ) E (49)

2 82U
Y B

k=as+1

82w, (n)

+*

+ @7ft

BN: X*V,g, ¢ 0

As a consequence, the optimum is a
unique maximum.



Now, we come to the most interesting
question: In what direction is the
optimal number of plants affected by
increasing risk in the price
probability distribution in period t?

Again, we use a "mean preserving
spread”™ to describe the increasing

., Tisk.

one possible price, the price level
with index D, is moved to a higher
level. This price is above the
reservation price in period t.
price, which is lower than the
reservation price in period t,
to a lower level.

Another

is moved

In that way the expected price in
peried t remains unchanged. Only the
higher possible price level affects the
objective function, in a way which is
indicated by (50).

2
8%=x,

i (50)
6ndpP,

sU
= oIt 6;):‘?:9'9 >0

pDifferentiation of the first order
optimum condition gives (51):

82n;

MAEol = (51)
dnbp,

2.0
E:_dn.+

=5 de, = 0

In (52) we f£ind that the optimal number
of plants is a strictly increasing
function of increasing price risk in

period t.
] §n; ]
sn* - 5}16?9 5 0 ) (52)

L din;
&n?

Since the number of plants is optimally
chosen, we instantly find that the
optimal expected present value also is
a strictly increasing function of the
price risk in periecd t.

;L3 . g
'B_Pi = e U, (xn") Vg, > 0

(53)
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9. The numerical version of the
adaptive multi stage model

Here, a numerical version of the
adaptive multi stage optimization model
will be presented. The progranm
calculates the optimal expected present
value per hectare for different numbers
of stems, N. When the number of stems
and the site index (H40, height in
meters at the age of 40 years) is
known, the volume per hectare is
calculated for every possible future
harvest period. The periods are 5 years
long and in the last period under
consideration the trees are 200 years
old. The optimization method is
stochastic dynamic programming.

The net price per cubic metre is
assumed to follow the function (54):

Pay,+y,t+ylN+e (54)

The price is a stochastic process. The
expected value of the error component,
epsilon, is zero. The probability
density function of the error is a
uniform or a triangular distribution.
The net price probability density
function £, (P) can be determined from
(54) -

For each possible choice of N, we may -
describe the objective function (the
investment cost is excluded) in an
arbitrary period by (55):

[e (v Ll £,(PY AP

a:
W, = fw,,lfgtp) dp +
4 .

(55)

Compare the discrete price version of
(55) shown in (47). In (47), on the
other hand, the investment costs are
included in the expression. In (55), we
assume that the investment level, the
number of plants, is fixed for each
optimization.

Of course the objective function is
reduced by the investment cost in the
optimizations for every possible
investment level. This is however not
explicitly seen in equation (55)-

In this version of the problem, the
reservation price in period t is



denoted q,. If the price is lower, then
we wait. If the price is higher, then
we harvest. If the price is exactly qg,
then we are indifferent between the two
po?sibla decisions: to harvest and to
wait.

Note that from now on, we do not
explicitly treat the number of stems in
the recursive eguations. We assume, on
the other hand, that the growth of the
volume is a function of the volume, the
number of stems per hectare and the
site index.

Since the number of stems is constant
within the dynamic optimizations, the
volume per hectare can be described as
a function of time only. Now, we should
optimize the reservation price gg:

W,

(56)
0
dq,

= [Wbt--‘.""(thgL)}fc(qt) =

We assume, in this derivation, that all
prices have strictly positive
probabilities, fg(qy) > O. Then, we
find that the term 1n the square
bracket of the expression in (56) must
be equal to zero. The second order
condition of a unigue maximum can be
found to be fullfilled in (57):

o2w,
dqe

= —e TtV £, (q) <0 (57)

From (56) we may derive the optimal
reservation price:

e-riq::'v:*‘{‘] = W:ol (A
(58) leads to (59):
t -
q; = ﬂ&"—é (59)

Ve

Now, we have too practical formulae,
(55) and (59), which give us the
optimal expected present values and the
optimal reservation prices in the
different periods via backward
recursion.
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9.1 The growth function of the
numerical model

In order to support the more detailed
multi stage optimization model, a more
detailed growth model is needed. The
report of Braastad (1983) contains
several forest production tables from
which interesting growth data may be
collected. The ambition in this paper
is to extract general, numerically
useful and efficient growth models that
can be understood from biological
theory.

It is found that a rather simple

functional form of the growth function
fits the data very well:

)

<

=a + bv+ cV?+ d/NV (60)

o
T

Note in particular that time (age)- is
not an independent variable. If we know
the present state, the volume and the
number of stems per hectare, then the
growth can be calculated. We have a
Markov model.

We should expect that growth is
strictly positive also for very low
levels of the volume per hectare. In
very young stands, the timber volume,
is very low in relation to the mass of
the (growth producing) needles. We
should expect that a > 0.

As the volume increases from a very low
initial value,  the mass of the needles
increases. Hence growth is an
increasing function of the volume per
hectare. We should expect that b > 0.

We expect a decreasing marginal return.
The marginal (growth) value of the
first volume (and needle) unit (tree)
is higher than the marginal value of
the later volume (and needle) units
(trees). If the stand becomes very
dense, the growth factors such as light
and water become limiting. We expect
that ¢ < 0.

There is a positive synergy effect: The
marginal (growth) value of the
"yolume", V, increases if the volume is
distributed between many stems. If
there are many trees distributed over
the area, then the crowns more
effectively utilize the sunlight and
the roots use the available water with
higher efficiency than if there are
only a few big trees. We may also



conclude that the marginal (growth)
value of the number of stems, N,
increases if these stems represent more
volume (and needles). Again, we should
expect decreasing returns to scale also
in this situation. As a conseguence,
the square root shape of the function
seems adequate. We should expect that
&> 0. .

The growth function parameters a, b, ©
and 4 have been determined for the
different site indices (according to
Braastad) H40 = 11, 14, 17, 20 and 23.
(H40 = 7 means that the trees reach the
height r when the age is 40 years.)
These are found in Table 2.. The value
of R? varies in the interval 90% - 99%.
In all the cases, the estimated
parameters have the expected signs and
are strongly significant.

Of course, we should be aware that the
very high values of the correlation
coefficients partly may be explained by
the fact that the "data" is derived
from production tables. A large
fraction of the random variation in the
original empirical data is most likely
excluded when we replace the original
data by that tables. However, if we
accept the production tables, we should
also accept (60).

gite ==--==PARAMETERS—==——-

(H40) a b c d rR? SEE

11 1.356 .9179 -.3213 0.6467 .957 .168
(13.7) (6.46) (-7.95) (15.3)

14 1.380 .7662 -.2908 1.118 .989 .142
(15.5) (7.49) (-13.4) (31.3)

17 1.812 .3668 =-.2233 1.577 .979 .279
(13.4) (2.94) (-11.2) (27.1)

50 1.611 .4309 -.2800 2.153 .990 .256
(12.3) (3.70) (-16.8) (39.8)

23 1.485 .5948 -.3296 2.704 .993 .295

(10-1)(4.75)[—20.4)(42.5}

Table 2.

Estimated parameters of the growth
function (60). The t-values are written
in brackets below the parameter values.
The adjusted R? values and the standard
deviation of the error (SEE) are given
for each function. The estimations are
based on the following numbers of
observations: 42 (H40 = 11m), 36 (H40 =
14m), 42 (H40 = 17m), 39 (H40 = 20m)
and 36 (H40 = 23m). The following units
and scales are used: Growth (1 cubic
metre per hectare and year), volume, V,
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(100 cubic metre per hectare), number
of stems, N, (100 stems per hectare) .
The variable V, volume per hectare, is
assumed to take the value (volume
pefore growth + volume after growth) /2
in the estimations. All data are found
in the appendix. In Figure 5. we find a
plot of the estimated growth function
and in Figure 10. we can follow the
time path of the volume per hectare.
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The estimated growth function. Site
index H40 = llm. Norway spruce.
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Figure 10.

The time path of the volume per hectare
according to the estimated growth
function. Site index H40 = 1lm. Norway
spruce.

9.2. A case study with some numerical
results

In order to derive results with the
numerical model, it is necessary to
make specific numerical assumptions. We
Jet the expected net price take the
value 164.60 SEK. This is the average
net price in Sweden during the period



1960 - 1990 according to Figure 8. In
the deterministic case, we will assume
that this net price is true in every
future period and optimize the
decisions accordingly. We will however
also utilize the variability
information reported in Figure 8. The
standard deviation of the net prices
was found to be 24.30 SEK. In the
stochastic case, we will assume that
this degree of variation is true also
in the future and optimize the
decisions accordingly. (We should be
aware that the estimated
autocorrelation of the net prices in
Figure 8. is very low and not
significantly different from zero.
Hence, we assume Z2ero autocorrelation.)

More specifically, the assumptions are:
The site index (H40) is 11m, the
species is Norway spruce, and the
expected net price per cubic metre is
164.6 SEK. The standard deviation of
the net price per cubic metre is 0 SEK
in the deterministic case and 24.30 SEF
in the stochastic case. A uniform
probability density function is used.
(A triangular probability density
function is also tested.) As a result,
the maximum deviation from the expected
value is 42.0876 (SEK). The fix
plantation cost is 2000 SEK per hectare
and the marginal plant cost is 2 SEK.
The real rate of interest is 2.5 %.

The physical development of a stand
with this site index is found in Figure
9. and Figure 10.. In the deterministic
case, the optimal present value is

1 927 SEK per hectare and the optimal
investment intensity is 600 stems per
hectare. The harvest should take place
at the age of 65 years. Note that this
harvest age is very much lower than the
lowest harvest age which is accepted by
the present forest act in Sweden. In
the stochastic case, the optimal
expected present value is 2 653 SEK per
hectare and the optimal investment
intensity is 900 stems per hectare.
Since we accept that future prices can
not yet be perfectly predicted, we can
not yet determine the optimal harvest
age. The optimal reservation prices and
the harvest age probability
distribution are found in Figure 11.
and Figure 12.. We find that the most
likely harvest age is 60 or 65 years.
However, it is possible that we should
harvest ten years earlier or more than
30 years later! The future timber
market will determine the optimal
decision. It turns out that the
qualitative results are the same for
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the two possible functional forms of
the probability density function (even
(uniform) distribution and triangular
distribution).

The important conclusion, that we
should increase the number of plants
under the influence of future price
risk, has been verified. We may
conclude that the results from the
numerical optimizations seem reasonable
in the light of the gualitative
analysis. Furthermore, the numerical
dynamic multi stage model makes it
possible to analyze problems in high
detail.

Oprimal
Reservation
Price
r
SEK
500 —
400 =
300 —
200 =
100 —
b = T T =T T 7 v T T "I 7T T1 ’
0 30 40 50 &0 0 80 0 W0 year
Figure 11.
The optimal reservation price in the
stochastic case as a function of the
age of the stand. Site index: H40 =

11m. Expected net price per cubic

metre: 164.60 SEK.. Standard deviation
of the net price: 24.30 SEK. Real rate
of interest: 2.5 %
Harvest
Probability
3
%1
20 —
15
w

-
van Lrvea Liaaa ] sl

Figure 12.

The harvest age probability
distribution in the stochastic case.
The assumptions are the same as those
reported in connection to Figure 11..



10. Conclusions

HWe can not make perfect predictions of
the future state of the world and the
round wood prices. We must accept this
fact when we undertake our investments,
the forest plantations.

We have found that the optimal initial
decision, the number of plants per
hectare, is an increasing function of
the degree of future price risk. This
general conclusion is true in the
investigated adaptive cases. Several
other general results have also been
derived and reported.

The particular problems of spruce
plantations in northern Sweden have
been given special attention. Several
explicit suggestions are given that may
considerably increase the
profitability. The optimal number of
plants is very sensitive to the future
price risk in the numerically
investigated case. Furthermore, the
optimal number of plants is sensitive
to most other "traditional and
deterministic" parameters of forest
economics such as the rate of interest,
the expected price level and the
marginal plant cost. Very similar
numerical results have been reported by
Solberg and Haight (1991).

Are there strong reasons to assume that
the reported results should have been
very different if more detailed
assumptions would have been made? Was
it a mistake not to include thinnings
in the analysis?

We may make a rough comparision with
the results reported by Solberg and
Haight (1991). They calculate the
economically optimal forest management
program for Norway spruce using
deterministic assumptions. For every
investigated site index, they find that
the net present value of the forest
investment is less than 3% higher if
optimal thinnings are undertaken, than
if there are no thinnings at all. They
do not consider the fixed cost per
thinning occation (the set up costs and
the costs of machine and labour
transportation) in their analysis.
still, they find that thinnings are not
very profitable.

We may draw the conclusion that
forestry without thinnings often gives
a higher present value than forestry
with thinnings, in particular if there
is no "adaptive reason™ why we should
make thinning decisions. This
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conclusion is consistent with the
results reported by Bjurulf and Freij
(1986) and by Wieslander (19886).

Very important reasons why we should
make species selective thinnings in
multi species forestry, have been
reported by Lohmander (1992a), (1992c)
and (1993) and by Carlsson (1992).

We may conclude, in the single species
case, that forestry without thinnings
may be all right in several cases.

In the future we may want to consider
the effects of spacing on the timber
quality in detail. In the numerical
analysis of this paper, it was possible
to show that such details are presently
not very interesting.

Solberg and Haight (1991) came to a
similar conclusion. One method to
obtain very dense stands rather
cheaply, stands that may give very high
timber quality, is of course natural
regeneration. Lihde (1991), Ackzell
(1992), Johansson (1992) and Malimbwi
et al. (1992) are examples of this
interest. As long as we are interested
in plantation forestry, however, we
have to accept that the economically
optimal investment intensity often is
very low. Norway spruce will give
rather good timber quality anyway and
the methods suggested in this paper are
appropriate.
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wumericsl Appsndix

in this appandix, The multi stage adaptive optimization program is
includad. x: l.l writtan in Quick Basic and may be used on & parsonal
rs may ba chosen by The usar. 1ou just have to

um when the Progras STarts. Other paramaters may ba
altared by modificationa of tha source cods. This should not be too
difficult since the code contains explaining resarks. Furthersors, the
pAranater names correspond to thoss used in the main text of this
paper.

Typical rasults {rom this program ars presented in the main text.
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then make & 204 TALARLNG.
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Fils = appensl.vp N v . v avae v
Hih 1200 53
1177 80
1154 107
1131 136
1109 167
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Empirical appendix

The dats used in the estimations of the growth function parameters ars
found in this appendix. Thers are five different site indices:
H40 = 11, 14, 17, 20 and 23.

T Y X L L
TR

The dats have been comstructsd from the production tables published by
Braastad (1983).

.

The variables ars:

L Nusber of stems psr hectare.

v Volume (cubic metre) per hectars.

dvde Volume growth (per hectare and year) until the
next revision.

™ Number of years until the next revision.

Source: Braastad, H., Yield level in Picea abies stands with low

initial density and irreqular spacing, Norwegian Forast Ressarch
Institute, 7/83, 1943
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¥V avde Y NV dvat YN ¥V dvae wn
3 1200 3% 1.7 3 1200 36 9.9 32
2 1186 &4 9.1 3 1191 76 10.3 2
s 1172 111 9.9 2 1182 96 11.8 3
s 1163 130 10.5 2 1168 130 12,7 2
5 1154 150 11,2 3 1159 155 13.9 3
s 1141 183 12.1 S 1146 195 15.) s
s 1119 241 11.6 5 1124 270 16.1 s
s 1097 301 12.7 S 1102 346 16.1 s
s 1076 361 13.5 S 1080 423 15.8 5
5 1055 419 13.2 & 1059 497 15,1 §
L] 1034 476 11.9 S 1038 568 14.4 S
] 1014 530 11.5 8 1018 €34 13.6 5
s 994 581 11.1 3% 800 317 6.9 2
347 515 5.7 s 800 3% 4.1 2 14 51 7.2 2
00 27 4.8 3 791 56 6.5 13 788 65 5.3 3
791 41 5.0 2 782 76 1.2 2 7T 8% 9.3 2
785 51 5.4 S 776 %0 1,7 2 773 107 10,3 3
770 77 6.2 S 770 105 4.4 3 764 137 11.6 5
755 107 6.9 5 761 129 9.2 § 749 193 12,5 5
740 140 7.3 5 746 173 9.8 5 735 251 12.9 5
726 175 7.6 3 732 220 10.1 % 731 118 3.9 3
712 2131 7.8 5 718 268 10.2 % 707 376 11.7 5
698 248 7.9 8 704 316 10.2 5 693 435 12.4 3
685 2805 2.0 5 690 364 10.1 5 680 492 12.0 s
672 323 7.9 5 677 410 9.9 5 400 18 ]
€55 158 7.9 § 664 455 9.7 S 397 26 4.0 2
646 391 7.8 3 400 1% 3.4 23 I 34 d.m 3
€34 428 7.7 S 396 2% 1.8 3 380 48 5.5 2
400 13 2.7 13 392 40 4.3 2 387 59 6.2 3
3% 22 2.9 2 389 4% 4.7 2 sy 17 1.2 1
391 27 3.3 s is6 58 5.3 3 376 112 5.0 5
36 43 2.9 S 82 71 5.8 s 369 150 .5 5
379 62 4.5 S 375 101 6.4 3 362 191 .9 s
372 84 4.9 S 368 132 6.8 5 355 213 9.0 s
365 107 8.2 S 361 164 7.1 S 348 275 9.0 3
58 132 5.5 § 3154 198 7.2 S 342 318 8.9 s
351 158 5.7 8 347 231 7.3 5
344 184 5.8 5 341 265 7.3 5
338 212 5.9 5 335 299 7.4 S
312 23% 6.0 5
326 266 6.0 S
320 294 6.1 3

314



