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Abstract: In this study, a growth function was estimated for an Iraman uneven-aged forest. Then the optimal
harvest decisions were calculated via stochastic dynamic programming. The harvest decisions which maximize
the expected present value of all profits over time are made adaptively, conditional on the latest available price
and stock level information. It is possible to determine the optimal harvesting level under different price and
stock states. The results show that you may increase the expected present value by more than 26% via optimal

adaptive decisions.

Key words: Stochastic dynamic programming, continuous cover forest management, growth function,

stumpage price

INTRODUCTION

Tranian Caspian forests cover about 1.9 million ha.
These forests are also called the Hyrcaman or Northem
forests. They are located on the south coast of the
Caspian Sea and the northern slopes of the Alborz
Mountain range from sea level to 2,800 m altitude (Fig. 1).
These forests grow, like a thin strip (800 kin long and
20-70 km wide). These are the most valuable forests in
Iran Industrial harvesting occurs only in the Caspian
forest. These forests have been divided into 98
watersheds and each watershed has been divided mto
several districts. The growth data used in this research
have been collected from a district in watershed 45. This
district 1s called Kheiroudkenar. The area 1s 8,000 ha and
extends from O to 2,200 m altitude. Stands in this district
are uneven-aged with various species. Main species are:
beech (Fagus orientalis), hormbeam (Carpinus sp.), maple
(Acer sp.), oak (Quercus sp.) and alder (Alnus sp). This
forest 1s managed under selection and shelterwood
systems.

Continuous Cover Forestry (CCF) 15 defined as the
use of silvicultural systems whereby the forest canopy is
maintained at one or more levels without clearfelling
(Forestry Commission, 1998).

The optimal harvesting policy 1s calculated as a
function of the entering stock, the price state, the
harvesting cost and the rate of mterest mn the capital
marlket. We use adaptive optimization. The most important
differences between adaptive optimization and traditional
deterministic optimization are the following:

Tt is explicitly accepted that there are conditions in
the environment that can not be perfectly predicted.
Environment here includes everything that is exogenous
to the system which should be optimized. Furthermore, it
is explicitly accepted that decisions can take place over
time and that later decisions should be based on the best
and latest mformation concerning the exogenous
conditions. The tradition of long-term planmng m forestry
15 based on the assumption that long term predictions
with lmgh precision are possible. Here we can mention that
the traditional forestry assumption 1s not rational. Timber
prices are difficult to predict accurately, since many things
may influence the markets. The stumpage price fluctuates
over time and it 1s very difficult to predict it with high
accuracy. Therefore we can regard the stumpage price as
a stochastic process. The stochastic properties of
roundwood prices in Iran have been analysed and
described by Mohammadi and Lohmander (2007). Clearly,
some other phenomena, such as the growth of the forest,
may also be stochastic. However, price variation 1s the
most important source of risk.

We here investigate whether or not the present
extraction level should increase or decrease under the
influence of increasing risk in the stochastic price
process. Our aim in this study 1s first to estimate a growth
function for data that was collected from an uneven-aged
forest in Tran. Then Stochastic Dynamic Programming
(SDP) was used to determine the optimal extraction level.
The solutions were compared to results obtained from
deterministic optimization of the problems. Descriptions
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Fig. 1: Iranian forest distribution map

of SDP and related methods with applications to general
forest management planning problems are given in
Lohmander (2007).

Markov decision processes have been used for
optimization of continuous and pulse harvesting in
forestry. Several earlier studies of uneven-aged forest
management have dealt with the problem of finding the
best cutting schedules that maximize economic returns.
The pioneering studies were based on deterministic
approaches such as: Duerr and Bond (1952), Duerr et al.
(1956), Chang (1981), Hall (1983) and Michie (1985).

Risk management in forestry decisions was
suggested by Hool (1966), who first used a Markovian
framework to analyze the management of even-aged
plantations. Hool determined schedules that would
maximize volume produced over a finite time period.
Lembersky and Johnson (1975) maximized the soil
expectation value of Douglas-fir (Pseudotsuga sp.)
plantations. Lembersky (1976) maximized harvest levels.
Lembersky and Johnson (1975) studied optimal policies
for managed stands. Their approach resulted in
optimal investment in timber production under price and

growth uncertainties. Lohmander (1987) investigated the
optimal management problem in forestry under the
influence of stochastic phenomena. Particularly he has
discussed the implication of a stochastic price process,
stochastic growth and wind throws. Kaya and
Buongiorno (1987) studied economic harvesting of
uneven-aged Northern hardwood stands under risk.
Their method determined the harvesting policies under
uncertain stand growth and prices. They used a transition
probability matrix representing stochastic growth and
price changes. Haight (1990) studied feedback thinning
policies for uneven-aged stand management with
stochastic prices. Buongiorno (2001a) developed a
generalization of Faustmann's formula for stochastic
forest growth and prices with a Markov decision
process model. Francois er al. (2005) investigated the
management strategy for uneven-aged forest in France
with stochastic growth and prices.

In different articles various mathematical
programming methods have been used to determine the
optimal solution. We will use SDP to determine the
optimal harvest decisions. The solutions will be discussed
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and compared with results obtained from deterministic
optimization of similar but simplified versions of the
problems. The previous studies are focused on European
and American forests. You can not find any earlier study
of the optimal harvest decisions with application of SDP
in the Iraman Northern forests. For that reason, we
mvestigated the optimal harvest policy n the Iranian
northern forests.

Here we introduce literature on SDP
applications. The method of SDP was originally presented
by Bellman (1957). Fleming and Rishel (1975) have given
a detailed presentation of deterministic and stochastic
optimal control. A well written introduction to the theory

some

of optimum control of stochastic differential equation
systems 1s given by Chow (1979). The qualitative
properties of optimal adaptive harvest functions have
been determined via analytical SDP by Lohmander
(1987, 1990). Optimal adaptive harvest functions with
contimious stock and harvest control spaces have been
investigated by Lohmander (1992). Rardin (1998) and
Winston (1994) have given good descriptions of DP
approaches and related methods
optimization. Problems in forestry can be expanded in
many different directions. We may consider large numbers
of connected decision-making problems. Several of the

of numerical

forestry problems associated with risk and the associated
optimization approaches been described by
Lohmander (2000, 2007).

Tarp et al. (2000) have modeled the Near-Natural
Silvicultural Regimes for Beech with an economic
sensitivity analysis. Buongiomo (2001b) studied the
quantifying the implications of transformation from even
to uneven-aged forest stands. The approach to
quantification of the implications of the transformation
from even-aged to uneven-aged management presented
by Buongiomo consisted of three steps: growth
modeling, target state selection and transformation

have

analysis. Jacobsen and Thorsen (2003) investigated the
optimal thinning strategies in mixed-species forest under
changing growth conditions caused by climate change in
Denmark. They used dynamic programming to optimize
the harvest distribution between Norway spruce and Sitka
spruce species. Comparison of management regimes in
beech: The economics of converting an even-aged Fagus
sylvatica stand to an uneven-aged stand using target
diameter harvesting was investigated by Tarp et al
(2005). Zhou and Buongiormo (2006) studied the forest
landscape management in a stochastic environment,
with an application to mixed loblolly pine-hardwood
forests. They used a Markov chain model to describe
stand transition between pre-defned states, with high-

frequency shocks and rare natural catastrophes.
Stochastic optimization was then used with this model to
study the trade-off between landscape diversity and other
management objectives.

The basic principles of research, background, earlier
related worlk and the purpose of the present studies
should be described m the introduction. Do not change
the fonts or line spacing to squeeze more text into a

limited number of pages.
MATERIALS AND METHODS

As producers, we benefit from price variation and
adaptive production. A special case is adaptive
harvesting. Figure 2-4 show the general principles.

Let us assume that the demand function 1s always at
level D2 (= the certainty case). The supply function is
denoted S. The market price (given perfect competition in
all markets) 13 P2. Then, the producer surplus 1s the green
plus the red area. Now, we assume that demand 1s risky.
With 508 probability, the demand function is D1 and with
50% probability, the demand function is D3. In the high
demand case D3, the price is P3. In the low demand case,
the price 1s P1. In the high demand case D3, the producer
surplus is the same as the producer surplus in the
certainty case plus the blue area. In the low demand case
D1, the producer surplus is the same as the producer
surplus m the certainty case minus the red area. Since the
blue area is larger than the red area, it is clear that the
expected producer surplus is higher in the risk case than
1n the certainty case.

Figure 3 shows that the quantity supplied to the
market is a kinked convex function of the market price as
compared to Fig. 2.

P
/ S
AN
P2
Pl
D3
D2
D1 Q
Fig. 2. Expected producer surplus under demand

variation: 1

1997



J. Applied Sci., 8 (11): 1995-2007, 2008

e

1 P
P1 P2 P3
Fig. 3: Expected producer surplus under demand
variation: I1
Producer surplus
z3
z4 /
72
21 .//
1 —F P
|
P1 P2 P3
Fig. 4 Expected producer surplus under demand

variation: 111

One effect of this is the following: Tf the price is very
low (much lower than P1), then the supplied quantity is
zero. Then it does not matter if the price falls even lower.
The producer surplus 1s still not below zero. On the other
hand, the producer surplus increases with increasing
price, as long as the price 1s above the level where the
supplied quantity 1s strictly positive. Furthermore, the
producer surplus increases more and more with increasing
prices. The reason is that the price and the quantity
increase at the same time. For prices such that the optimal
supply volume is strictly positive, the producer surplus is
a strictly convex function of price. In such a case,
increasing price risk means that the expected producer
surplus strictly increases. Compare the Jensen inequality
(Rudin, 1987).

Figure 4 shows the producer surplus for different
prices as compared from Fig. 3.

Note that the producer surplus is a convex function
of price. It 15 zero for sufficiently low prices. For
sufficiently high prices it is strictly convex. Figure 4
shows that producer surplus takes the value Z2 in the
deterministic case. In the stochastic case, the producer
surplus takes the values Z1 and Z3 with 50% probability
each. The expected producer surplus in the stochastic
case 13 Z4. [t1s quite clear that Z4>72. Hence the expected
producer swrplus is (nonstrictly) higher under risk than
under certainty. The expected producer surplus is strictly
higher under risk than under certainty in case the relevant
prices are found in an interval where the optimal supply 1s
strictly positive, which also means that the producer
surplus function is strictly convex.

Growth function: The biological growth function 1s built
on a model of population dynamics which was first
presented by Schaefer (1954). Schaefer’s model rests
upon the so-called Pearl-Verhultst, or logistic, equation of
population dynamics.

A general version of this explicit equation is:

x = x(t) = The biomass stock at time t
X=FXx) (1

Equation 1 expresses biomass growth as a function of the
biomass stock. The growth function F(x) is assumed to
have the following properties:

(a) F(x) =0 forx e(x,, x,)
(b)F(x)=F(x)=0 (2)
(c) d'F(x)/dx* = F"(x)<0 x 2(x, %)

Property (a) means that the stock is growing as long as it
remains within the open interval (x,, x,). The second
property means that growth ceases at a population size of
%, or x,. Fmally, the thurd property means that the marginal
rate of growth is a strictly decreasing function of the
population size. These assumptions generate a strictly
concave curve (Fig. 5). F(0) = -B<0, the growth rate
increases monotonically up to some critical level of the
stock X, the maximum sustainable yield of the population
and then decreases monotomnically. If the system 1s left to
itself, it will end up at x = x,, provided that the initial
population 1s larger than x,.

Formally,
limx(t)=x, x(0)>x,

t-

%, 13 a stable equilibrium, which may be mterpreted as the
environments carrying capacity.
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Fig. 5: The biomass growth function (Johansson and
Lofgren, 1985)

By introducing harvesting h(t) into the model as a
function of time, we can write the production function

x=Fx)-h(t) h(t)=0(3)

A special case 1s the logistic growth function discussed
by Clark (1976). The growth function is:

il X 4
G- (4)

Where:

G = Growth

r = Intrnsic growth rate

X Stock

K = Environmental carrying capacity or saturation level

Many papers have been written about growth
functions in uneven-aged forests. It 15 not our amm to
review all of them, but here we mention some:

Hamn and Bare (1979), Buongiormo et al. (1995),
Virgilietti and Buongiormno (1997) and Peng (2000).

In the numerical calculation of this paper, the growth
data (Appendix 1, Fig. 6) was collected from previous
research publications based on research in the
Kheiroudkenar forest that 13 located m the north of Iran
(Zahed:, 1991, Majnonian and Etter, 1993).

We estimated the following growth function:

G =V, +RV Tz (5)
Where:
G, = Growth (m’ ha™ year™)
«, and B, = Estimated parameters
v, = Stock level (m* ha™)

We assume that € 1s a series of normally distributed
errors with mean zero and autocorrelation zero.
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Fig. 6: Growth function for an uneven-aged forest in the

north of Iran
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Fig. 7: Growth residuals as a function of V
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Fig. 8: Growth residuals as a function of V2

Regression analysis was used to estumate the growth
function. The results show that there is a significant
relation between G, V and V*? with t-statistics 5.226 and
-2.084 for V and V’, respectively (Fig. 7-9).

Let us determine the stock level which maximizes
growth:

aG
AT (6)

The first order optimum condition is:

oy + 2B,V =0 which gives V= —;—B‘ (7

1
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Table 1: Estimated growth function parameters based on the growth data
from an Iranian northern forest

& (standard
o ) deviation of g) R? R
Parameter  0.0223462  -0.000017772 1.126 0.734 0.857
value
Standard 0.0042763 0.00000853
deviation
t-statistics  5.226 -2.083
oG
3-8V
g 2 % o+ 2B,V

u T T T T T L 1
0 100 200 300 400 500 600 700

v
Fig. 9: 3G/IV as a function of V
G A
7.024
G0, V+p,V’
0 >
628.69 v

Fig. 10: Growth as a fuimction of V

Figure 10 also shows this value. Tf we use the estimates of
«, and B, from Table 1, we find that the growth is
maximized if

_ -0.0223462

T 2(-0.000017772)

This stock gives the maximum sustainable yield. Tf we
use the estimates of &, and B, and replace V by 628.69
in Eq. 5 and assume that € = 0, we get:

=628.69m ha’.

G = 0.0223462*628.69- 1.7772*107°*
(628.69)2=7.0m" ha™" vear ".

Hence, the maximum increment per hectare occurs
when the stand density is 628.69 m’ ha™' and the maximum
sustainable increment is 7.0 m’ ha™ year ' (Fig. 10).

Forest research in several countries is to a large
extent focused on detailed descriptions of the biological

807 _¢— Historical stumpage price (€ m™)
704

604
501
40-

€nm’

301
20+

101

0 T L] L] T
1980 1984 19188 1992 1996 2000 2604
Year

Fig. 11: Historical stumpage prices (real prices) adjusted
to the price level of the year 2004 m Iran during
1980-2003 (€m )

growth. Tn this study, the main interest concerns the
economically optimal management of forests in Iran. It
was important to obtain relevant data from the region that
could be used to estimate a robust growth function with
theoretically well described mathematical properties. The
logistic growth function has a long history m science and
been found useful to describe the growth of many kinds
of organisms. Since the availability of empirical data from
the region was limited, the number of observations is not
large. With the selected robust growth function, the
number of observations was still sufficiently high to
estimate the function parameters. All parameter estimates
obtained the expected signs. In the future, in case more
empirical observations will become possible to obtain, the
results can easily be updated. Then, more focus can be
given to different parameters describing the forest
properties.

Stumpage price: The stumpage price data was derived
from actual timber, roundwood, fire and pulpwood prices
at road side minus the variable harvesting costs. Then it
was adjusted by consumer price index (CFI) for the base
year 2004 (Fig. 11).

In the study, we have assumed that the relative
frequencies of trees of different sizes and qualities are the
same, also if the total volume per hectare 15 changing. As
a consequence, the prices per cubic meter are not affected
by the changing volumes per hectares. In the future, if
more empirical data becomes available, it will most likely
be possible to generalize the model. Then, one could also
make 1t possible to change the relative frequencies of
different sizes, qualities, species and prices. Regression
analysis was used to determine the price process
parameters.

The first order autoregressive (AR) model 1s:
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Pu=0,+BP +e. (8)

We assume that €15 a series of normally distributed errors
with mean zero and autocorrelation zero and 0<,<1. The
mean of the price process was calculated based on the
first order AR model parameters:

__ % 9
Peq l_ﬁz. ()

Tf we use the estimates of ¢, and B, from Table 2, the mean

of the net price process is 47.6 € m .

Optimization: The aim of the optimization is to maximize
the expected net present value from the harvesting
activities i1 continuous cover forest management. We can
consider harvesting as decisions under risk or certainty.
Decisions under risk refer to the case when there are
several possible outcomes. The decision maker knows all
possible outcomes and the probabilities. The decisions in
forest management are a series of management activities
which maximize the objective subject to the resource
constraints and market conditions. At each time t,
decisions should be made on management activities such
as regeneration, thinning, fertilization and final harvesting.
Consequences of decisions at time t are not only the
instant rewards (costs and/or revenues), but also a new
state of the forest affecting which decisions will be made
in the future periods. The optimality of decisions at time
t should therefore be judged by the immediate rewards
and the impacts on the future decisions. The forest
resource management problem 1s hence a multistage
sequential decision problem. When forest resource
development, management costs and timber prices are
stochastic, it 18 a problem of multistage decisions under
risk. It 1s observed that the decisions at time t can also be
viewed as multistage decisions. The forest manager
should first decide whether or not to cut the trees at the
current age or diameter. If the existing tree is cut, further
decisions on the regeneration method and intensity
should be made.

The objective function 1s the expected present value
of all present and future harvesting. In the discrete time
version of the problem, the expected present value (1)
may be written as:

=Y ¢ (@R, - C) (10)

t 18 the time period, P 1s the stumpage price (price-variable
harvesting cost) and h is the harvest level. r denotes the
rate of interest. Real prices and rates of interests will be
used. Ct is the set up cost.

Table 2: Estimated price parameters based on the stumpage price data for
the first order AR process from period 1980-2003
a(standard
o By deviation of g,) R? R
Parameter value 12.367  0.740 8.817 0.555 0.745
Standard deviation 7.188 0.145

t-statistics 1.720 5.103
0 if h=0
YTk if h, =0

C, is the cost of moving harvesting machines such as a
harvester and a forwarder.

Fixed costs are not explicitly treated in this model.
Such costs are fixed and do not affect optimal behaviour.
One important reason to analyze the harvesting problem
in discrete time 15 that this makes it possible to include set
up costs (such as the costs of moving machines). If you
do not consider set up costs, it 15 mostly optimal to
harvest very small quantities every moment. When you
have set up costs, which is always the case in reality, it 1s
optimal to harvest large quantities with longer time
intervals. Then, the optimal stock level will have a saw
tooth shape.

The Present Value (PV) of continuous time natural
resource harvesting has been presented by Johansson
and Lofgren (1985):

PV = | ph(te "dt (11)

p is the net price (price - variable harvesting cost).

h(t) 1s the quantity harvested at time t, r 13 the mterest
rate (r>0).
PV 1s maximized subject to the production function

% =F[x(1)]-h(t)
X120 (12)
x(0) =x,

FL(x(t)] is the growth function.

This really means that,
_[;h(t)dt <x,+ _[DSF[X(t)]dt,

for every S, such that 0<5<T where T is the horizon. In
our mumerical calculation we will use the price and growth
to determine the optimal extraction level in an uneven-
aged forest in the Iranian northern forest.

SDP approach: The optimal decisions are determined
using SDP in discrete time. The periods are denoted t.
te40,1,2,..T}. The final period, the horizon, 15 denoted T.
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f.(m) is the optimal expected present value (in the
beginning of period t) of all profits (revenues-costs)
when m 18 the entering state of the system in period t.
Rym,u) 15 the profit in period t as a function of the
entering state in the same period and the control
(or decision and action) u.

U(m) denotes the set of feasible controls as a
fumetion of the entering state. In a generalized setting, U(*)
could also be defined as function of time, which is
however not necessary in this problem. In the final
period, T, the optinal decisions and expected present
values are determined from:

fr(my= max IR (mu)} ¥meM (13)

M 1s the set of states. The optimal decisions and expected
present values n the earlier periods t £t§0,1,2,3,.. T-1} are
determined recursively via the baclkward algorithm of
stochastic dynamic programming:

f,(m)= mua(.x){Rt(m,u) +dY p@|m,u)f,, (n)} vme M (14)

p(n|m,u) 1s the conditional probability of reaching state n
1n the next period if your entering state in this period is m
and the control is u. d is the one period discounting
factor.

de(n\ m,uif ,, (n)

is the expected present value (expected in the beginning
of period t) of all profits in the periods after period t in
case the entering state in period t is m and decision u is
made in period t.

In this analysis, the state space is two dimensional.
The general problem description using state index m 1s
still relevant. One state dimension 1s the stock level
(m* ha™) and the other dimension is the price level. The
stock level grows according to a deterministic growth
function. If harvesting takes place, the stock level is
reduced accordingly. The price 1s assumed to follow a
stochastic Markov process. Decisions are sequentially
optimized based on the latest information concerning the
state, which means that the stock level and the price level
are correctly observed and known in the begiming of
each period.

The optimization software created by Lohmander was
used to determine the optimal harvest decisions. This
software solves the SDP problem mn Perl (Appendix 2). We
need to put the parameters into the software representing:
the growth function, the price function, the lowest

feasible stock, the period length, the horizon, the set up
cost, the rate of interest, the highest stock level index, the
highest harvest level, the number of price states and the
difference between price states. When we want to solve
real problems, we have to explicitly deal with the real
numerical problems of stochastic dynamic events. For
instance, when we solve the SDP problem numerically, we
have to use a constrained state space. For that reason, we
can not directly use the assumption of stochastic
transitions following a Gaussian probability density
function or some other probability density fimetion with
infimte tails. One way or another, we have to cut the tails,
preserving the most essential properties of the stochastic
transition in question. Hence, we use the mean and
variance derived from the empirical data and assume that
the transitions from one period to the next follow a
triangular distribution. When we add a large number of
such one period transitions, the total outcome will become
very similar to the result we would have obtained if we
had used the Gaussian distributions m every step. In the
limit, the sum of moves will almost follow a Gaussian
distribution in any case, except for the fact that the state
space 13 discrete. When the process state 1s close to one
of the boundaries, there 13 a low probability that the next
stochastic move takes the process out of the feasible set.
In such cases, the algorithm adjusts the transition
probabilities such that the total sum of transition
probabilities always 1s 1dentical to 1.

Deterministic calculation of the total present values: To
determine the optimal harvesting period in the presence of
different set up costs, the expected present value was
calculated. We start at the mitial stock level which is
assumed to be the lowest stock level of the cycle. In case
there 1s no price variation and the first harvest will begin
tl years from now, the expected present value 1s:

__Pati-c 15
(1+0)-1) 4

where, g is the annual growth (m* ha™) which we assume
to be constant in the neighborhood of the initial stock
level. Here ¢ is the set up cost per hectare and occasion.
When the initial stock is 100 m® ha™’, then from the
growth function (5),

g = [(0.0223*100)-1.777*10~*(100)] = 2.05m’ ha~" year™
P is the mean of the net price process, P = 47.6€m ",

t; 1s the cutting cycle and 1 1s the rate of mterest in
discrete time m the capital market (3%). Note that the

2002



J. Applied Sci., 8 (11): 1995-2007, 2008

rates of interest r and i are very close to each other but
not identical. 1 =er-1 and r = LN (1-+1). When 1 = 3%, then
r = 2.956%

RESULTS AND DISCUSSION

SDP results: After executing the SDP software, the
results include:

The transition probability matrix (systematic sample):
This probability matrix shows the probability distribution
of prices in the next period when the price in the first
period 18 known (Table 3). The sum of transition
probabilities will be 1. Here we just present a systematic
sample because the whole probability matrix will include
many numbers (Table 3). In the numerical algorithm, the
probability density function of the stochastic residual of
the one step transition is a discrete approximation of a
triangular function.

The variance (8°) of a stochastic variable with a
triangular probability density function according to the
illustration, 1s:

li(a—%a)azda. (16)

Since ab = 1, we find that

1

and b = /6
36

a=

The optimal harvest volumes in different states: The
optimal harvest volumes are determined for different price
and stock states (see the parameter values in Appendix 2).
If the stock is more than 100 m® ha™ and the present price
is 127.602 € m~ or more, the stock should instantly be
harvested down to the lowest feasible level (100 m® ha™).
In other sitvations, when the price 18 lower than
127.602 € m™, we should wait longer. For example,
when the present price is 57.602 € m~, we should wait
until the stock reaches 122 m® ha™'. Then we should
harvest 22 m’ ha™'. When the present price is 47.602 € m™
or more, we should wait until the stock reaches
148 m’ ha™. Then we should harvest 16 m *ha™ ' When
the present price is 37.602 € m~, we should wait until
the stock reaches 148 m’ ha™. Then we should harvest
& m’ ha™' (Appendix 3). The relation between stock,
optimal harvest and net price states is shown m Fig. 12.
The optimal harvest level is an increasing function of the

net price and of the stock level.

Table 3: Transition probability matrix (systernatic sarmple). Only 5 rows
and 4 columns are shown below

82= 0 2 4 6
State  Price P2= -52398 -32308 -12398 7602
81=0 P1=-52398 0 0.3366 01633 0
81=2 P1=-32398 0 0.0172 0.4408  0.0504
81=4 P1=-12398 0 0 0.1295  0.3704
81=6 Pl1=7602 0 0 0 0.2354
81=8 P1=275602 0 0 0 0

Optimal harvest (m3 ha‘l)

Fig. 12: Relation between stock, optimal harvest volume
and net price. The stock and net price levels are
described below. In the graph, the net price P
{€m™) can be determined from P=7.602+
(j-6)*10, where j is the net price state index

Stock level m’ ha™' Netprice level €m™

1 102 S1 -42.398
10 122 S10 47.602
20 151 S20 147.602

The total present values: The total expected present value
when we consider price variation and adaptive harvesting
15 present value, stock and net price. The expected
present value is an increasing function of the net price
and of the stock level (Fig. 13).

Sensitivity analysis: A numerical sensitivity analysis was
performed in the following way:

»  Inthe SDP software, the period length, the horizon,
the number of price states and the price difference
between price states were changed.

The following observations were made:

»  When the length of the planning periods increase
from 1-5 and 10 years, the optimal harvest volumes
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Fig. 13: Relation between expected present value, stock
and net price. The stock and net price levels are
described in connection to Fig. 12

mcreased. The total present values in the higher
price states increased. In the lower price states and in
the lower volume states, the total present value
decreased.

*  When the horizon decreased from 100-50 years, the
optimal 1mitial harvest volumes did not change but
the total present value decreased.

¢ Are the results sensitive to the number of price and
volume states and the resolution m different
dimensions?

+  First, the number of states in the price dimension was
mcreased n this way:

¢ The original price states were kept as they were, with
the same defimtions and distances between different
price states. More price states were introduced
representing higher and lower price levels. With this
change the optinal decisions and present values
were not changed. Then, more price state levels were
introduced in such a way that each old price state
was split into two new price states, increasing price
resolution. Then, the
increased by approximately 20 € ha™".

expected present value

Results of deterministic calculation of the total present
values: To determine the optimal harvesting period in the
presence of different set up costs, the expected present
value was calculated. The optimal harvest interval is 6 (9)
years, if the set up cost is 50 (100) € ha™" and the present
value is 2758(2552) € ha' (Fig. 14). The expected present
value i the determimstic case (& = 0) and in the real case

Table 4: The optimal expected present wvalue (m) in the deterministic
case (& = 0) and in the real case where price is stochastic
(& = 8.82 € m~ %) and harvesting is adaptive

Standard deviation (8, €m™) T (€ha™h
0 2690
882 3404
17.636 4151
3000+
2500
2000
— —a— The expected present value
I,E 1500- when the set up cost is 50 € ha ™"
W, —m— The expected present value .
& 19004 when the set up cost is 100 € ha™
5001
01 T T T T T
5 10 15 20 25
=500~ t (year)

Fig. 14: The expected present value (m) for different
harvesting mtervals when the set up costs are 50
or100€ha™

where price is stochastic (8 = 8.82 € m™") and harvesting
15 adaptive were compared. The results show that the
expected present value in the stochastic case increased
by 26.54% (Table 4).

The Table 4 also shows the result in case the
standard deviation is 100% higher (8 = 17.637 €m ™) than
according to the empirical data.

CONCLUSION

In thus study, we first estimated a growth model of an
uneven- aged forest m the Iraman Caspian region. The
growth model can predict the evolution of a stand. The
expected present value was determmed for the
deterministic and the real stochastic cases. Under
deterministic assumptions, the optimal harvest mterval 1s
6 (9) years, if the set up cost is 50€ (100 €) per hectare and
the present value is 2758 (2552) € ha™". We used a SDP
model to determine the optimal cutting rule for different
price and stock states. It 1s possible to take the fact that
future price and growth are not vet known into account in
the plamming of forest harvesting. We can expect to gain
from adaptive harvesting this way. The expected present
value increased by 26.54%. Under determimstic
assumptions and without set up cost, 2G/2V =1 when V
15 optimal (Compare Clark, 1976). In another study by
Lohmander (1992), the expected present value increased
by 43.3% when the net price standard deviation increased
from 0-30% of the expected net price. This is reasonable
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since you can mostly select to harvest during years when
prices are at least one standard deviation above the
expected value. In this study, the standard deviation of
the stochastic residual in the net price function represents
18.53% of the expected net price (8.82/47.602 = 0.1853). In
the earlier study by Lohmander (1992), the standard
deviation of the stochastic residual represented 30% of
the expected net price.

Can we compare these results?: In this study, we gained
26.54% in expected present value. Lohmander (1992)
gained 43.3%. If we divide the relative gains by the
relative price standard deviations, we get 1.43 m thus
study and 1.44 in the previous study.

We find that the results are surprisingly close to each
other. The problem 1s however a bit more complicated. In
this study, there 1s one harvest option each year. In the
earlier study by Lohmander (1992), there was only one
harvest option every five years. For that reason, we would
expect a better result in this study. On the other hand, in
this study, there is a stock level constraint, which means
that the stock level never may go below 100 m® ha™. In
the study by Lohmander (1992), there was no such
constraint. Hence, the different studies have different
constraints. In the end, it turned out that the constraints
had similar effects on the expected economic result.
Constraints mostly imply costs. In this case, the costs of
the different kinds of constraints (to wait at least five
years between the harvest periods or to always stay
above 100 m’ ha™) seem to have similar magnitude. In any
case, 1t 18 obvious that we may make a considerable
economic gain by using market adaptive harvesting.

One comment to price adaptive harvesting in
forestry, that has sometimes been given 1s the following:
If forest managers initially did not adapt harvesting to
prices and then suddenly started to adapt harvesting to
prices, this could have the effect that price variations were
reduced. Of course, this 1s true. However, econometrical
studies usually confirm that supply 13 an increasing
function of price. Hence, the fact that you should adapt
harvesting to price 1s what you also already find in
forestry. Hence, forest managers will not suddenly start to
do something completely new if they adapt harvesting to
prices. In this study, however, we try to determine exactly
how this price adaptive harvesting should be determined
in order to optimize profitability.

The harvest interval that currently is used by Tranian
Forest, Range and Watershed Management Organization
(FRWO) is 10 years. They traditionally used this harvest
mterval. We hope that our results can help the Iranian
FRWO to make economically optimal harvest decisions.
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APPENDICES

Appendix 1: The growth data from Kheiroudkenar forest in the north of Iran
Volume (m*ha™b) Growth (m® ha™! year™!)

170 2.20
242.2 4.82
304 4.31
388 5.83
457.8 8.32
544 7.14
607 6.08

Appendix 2: The optimal continuous cover forest management software
created by  Lohmander  (http:/www.lohmander.com/
CallDynProgContHS.htm)

1= =1 | '1-=,—_|_ 106 J<=100

Bet up cost per hectare
L2 1
Lo | 0.0223 [-0.00001777__|

SE T T —

1 20 =100 10000

.13 pb _ Prioe process STDEV
[z ] 072 O T —
(8 Caloulate )

Appendix 3: Optimal harvest volumes (m’ ha™) in different states. Only 8
rows and 6 cohumns are shown below

i= 0 1 2 3 4 5 6

Sate  Price m’ha™' 100 102 104 106 108 110 112
i=le P=107.602 0 4 6 8 10 12
i=15 P=97602 0 4 6 8 10 12
i=14 P=87602 0 4 6 8 10 12
i=13 P=77.602 0 4 6 8 10 12
i=12 P=67.602 0 0 0 8 10 12
j=11 P=57.602 0 0 0 0 0 0
=10 P=47.602 0 0 0 0 0 0
i=9 P=37.602 0 0 0 0 0 0

Appendix 4: Total present value (€ ha™'). Only 8 rows and 6 columns are
shown below
i= 0 1 2 3 4 5

State  Price m‘ha” 100 102 104 106 108 110

ji=16 P=107.602 3609 3785 4004 4234 4467 4705
j=15 P=97.602 3583 3741 3938 41406 4357 4573
i=14 P=87.602 3563 3705 3876 4063 4253 4446
i=13 P=77.602 3547 3676 3818 3984 4152 4323
i=12 P=67.602 3532 3652 3778 3910 4052 4202
=11 P=57602 3520 3633 3751 3872 3996 4123
i=10 P=47.602 3511 3622 3735 3851 3969 4089
1=9 P=37602 3504 3612 3723 3836 3950 4067
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