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Attrition coefficient estimations via differential equation systems, initial and terminal 
conditions, and nonlinear iterative equation system solutions, 
by Peter Lohmander, WSTA-2024

ABSTRACT:

In battles with aimed fire, the attrition of a force can under simplified assumptions be shown to be 
proportional to the number of enemies. Lanchester models for aimed fire are differential equation systems 
that can be applied to describe the dynamics of such battles. In order to determine the attrition coefficients 
and the complete dynamics of the battle in continuous time, the following procedure is introduced: First, the 
general solution of the Lanchester differential equation system, which is a homogenous second order 
differential equation system, is derived. The four parameters of the solution are determined. In these 
equations, the initial and terminal sizes of the two forces, are parameters. A 4-dimensional fix point iteration 
algorithm is developed and implemented as a computer code, that rapidly solves the nonlinear equation 
system. After 40 iterations, the absolute relative errors in all equations are smaller than 10^(-12) . Then, a 
discrete time version of the Lanchester differential equation system, with stochastic attrition coefficients, is 
defined as a difference equation system. The effects of increasing risk in the attrition coefficients, that 
determine how the time derivative of the size of force X is affected by the size of force Y, at different points in 
time, is analyzed. It is shown that the expected size of force X is a strictly convex function of the risk in the 
attrition coefficients. According to the Jensen’s inequality, the expected size of force X at time t+2 is a strictly 
increasing function of the risk in the attrition coefficients at time t and t+1 for arbitrary values of t. In case the 
attrition coefficients in different periods are stochastic, and the system parameters are determined according 
to the suggested procedure, then the expected attrition coefficients obtain higher values than if the attrition 
coefficients would be constant over time. This can explain differences between attrition coefficient estimates 
based on different methods and coefficient risk assumptions.
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Abstract Part 1:

• In battles with aimed fire, the attrition of a force can under simplified 
assumptions be shown to be proportional to the number of enemies. 
Lanchester models for aimed fire are differential equation systems 
that can be applied to describe the dynamics of such battles. 

• In order to determine the attrition coefficients and the complete 
dynamics of the battle in continuous time, the following procedure is 
introduced: 

• First, the general solution of the Lanchester differential equation 
system, which is a homogenous second order differential equation 
system, is derived. 
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Abstract Part 2:

• The four parameters of the solution are determined. In these 
equations, the initial and terminal sizes of the two forces, are 
parameters. 

• A 4-dimensional fix point iteration algorithm is developed and 
implemented as a computer code, that rapidly solves the nonlinear 
equation system. After 40 iterations, the absolute relative errors in all 
equations are smaller than         . 
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Abstract Part 3:

• Then, a discrete time version of the Lanchester differential equation 
system, with stochastic attrition coefficients, is defined as a difference 
equation system. 

• The effects of increasing risk in the attrition coefficients, that 
determine how the time derivative of the size of force X is affected by 
the size of force Y, at different points in time, is analyzed. 

5



Abstract Part 4:

• It is shown that the expected size of force X is a strictly convex function of 
the risk in the attrition coefficients. 

• According to the Jensen’s inequality, the expected size of force X at time 
t+2 is a strictly increasing function of the risk in the attrition coefficients at 
time t and t+1 for arbitrary values of t. 

• In case the attrition coefficients in different periods are stochastic, and the 
system parameters are determined according to the suggested procedure, 
then the expected attrition coefficients obtain higher values than if the 
attrition coefficients would be constant over time. 

• This can explain differences between attrition coefficient estimates based 
on different methods and coefficient risk assumptions.
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Empirical data:

The Battle of Iwo Jima
during World War II:



The Battle of
Iwo Jima:

(AI generated picture)
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 0 0 0 0, 0,1,...,t t t ta b x y t T         (38) 
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a a
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+
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(39) 

 

We can express the time dependent attrition coefficients as (40) and (41). 

0a a s= +  (40) 

 

1a a s= −  (41) 

 

Parameter estimation based on discrete time and stochastic outcomes 
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The coordinates at time t  are ( ),t tx y . These are recursively determined in (42) to (45). 

1 1 0 0 0x x x a y = − = −  (42) 

 

1 1 0 1 1y y y b x = − = −  (43) 

 

2 2 1 1 1x x x a y = − = −  (44) 

 

2 2 1 2 2y y y b x = − = −  (45) 
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The recursion (42) to (45) can be described as (46) to (49). 

1 0 0 0x x a y= −  (46) 

 

1 0 1 1y y b x= −  (47) 

 

2 1 1 1x x a y= −  (48) 

 

2 1 2 2y y b x= −  (49) 
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Now, we can determine how 2x  is affected by changing properties of the stochastic variable s . 

From (46) and (48), we get (50). Via the earlier equations, (50) is further developed to (51). 

( )2 0 0 0 1 1x x a y a y= − −  (50) 

 

( )( ) ( ) ( )( )2 0 0 0 1 0 0 0x x a s y a s y b x a y= − + − − − −  (51) 

 

( ) ( ) ( ) ( )( )2 0 0 0 1 0 0x x a s y a s y a s b x a s y= − + − − + − − +  (52) 

 

( ) ( )( )2 0 0 1 0 1 02x x ay a s b x a s a s b y= − + − − − +  (53) 

 

( )( ) ( )( )2 2

2 1 0 1 01 2x a s b x a a s b y= + − − + −  (54) 
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( )( ) ( )( )2 2

2 1 0 1 01 2x a s b x a a s b y= + − − + −  (54) 

 

2
1 0 1 02

dx
b x b y s

ds
= − +  

 
(55) 

 

2

2
1 02

2 0
d x

b y
ds

=   
 

(56) 

 

 

Observation: 

2x  may be regarded as a function of many parameters, including s . Compare equation (54). In 

equations (57) and (58), we simplify notation and write 2 ( )x s . According to equation (56), 2x  is a 

strictly convex function of s . From the Jensen’s inequality (Jensen (1906)), we get the equations (57) 

and (58). 

( )( ) ( )( ) 2

2 2 , 0sE x s x E s if    (57) 

 

( )( ) ( )( ) 2

2 2 , 0sE x s x E s if = =  (58) 
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Terminal condition as expected value: 

In a 2- period problem, we have the terminal condition found in equation (59). The expected value of 

2x  is written as a function of ( , )a s , where s is a function of the standard deviation of s , s . 

( )( )( )2 , s TE x a s x =  (59) 

We are interested to see how the estimated a  should be adjusted in case we know that s  increases, 

and we simultaneously want to make sure that the terminal condition (59) is satisfied. 

Total differentiation gives equation (60). Clearly, as we see in equation (61), we cannot change the 

already known terminal value of the state variable. 

( ) ( )2 2
0s T

s

dE x dE x
da d dx

da d



+ − =  

 
(60) 

 

0Tdx =  (61) 
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Equations (60) and (61) lead to (62), which can be rewritten as (63). 

( ) ( )2 2
0s

s

dE x dE x
da d

da d



+ =  

 
(62) 

 

( ) ( )2 2

s

s

dE x dE x
da d

da d



= −  

 
(63) 

 

The derivative of the parameter a , the estimated expected attrition coefficient, with respect to the 

standard deviation of the attrition coefficient, s , is found in equation (64). 

( )

( )

2

2

s

s

dE x

dda

d dE x

da





 
− 
 =
 
 
 

 

 
 

(64) 
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In order to determine the sign of the derivative in equation (64), must know the sign of the derivative 

of 2x with respect to a , which is found in (65). Equation (65) can be reformulated to (66) and (67). 

2
0 1 0 1 02 2

dx
y b x b y a

da
= − + −  

 
(65) 

 

( )2
0 1 1 02 1

dx
y b a b x

da
= − + +  

 
(66) 

 

( )1 02
1 0

1 0

1
2 1

b a ydx
b x

da b x

+ 
= − + 

 
 

 
(67) 
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Equation (68) shows a combination of three different assumptions, which makes sure that the sign of 

the derivative of 2x with respect to a  is strictly negative. The first listed assumption follows from the 

earlier assumptions in this paper. The second assumption is satisfied in case 1 0.1b  , which is normal 

in most battles. (Compare the attrition coefficient values is Table 5.) The third assumption is a constraint 

on the ratio between the sizes of the initial forces: The initial size of force Y is at least 5% of the initial 

size of force X. That assumption is probably relevant in almost all real battles. Compare the initial force 

sizes reported in Table 1. In case the assumptions in (68) are true, then equation (69) follows. 

( )
( )1 0 2

1 0

1 0

1 1
0 10 0

20

b a y dx
b x

b x da

+   
         

  
 

 
(68) 

 

( ) ( )
( )

( )

2

2 2

2

0 0 0
s

s s

dE x

ddE x dE x da

d da d dE x

da



 

 
− 

       =  
  
 
 

 

 
 

(69) 
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( ) ( )
( )

( )

2

2 2

2

0 0 0
s

s s

dE x

ddE x dE x da

d da d dE x

da



 

 
− 

       =  
  
 
 

 

 
 

(69) 

Some interpretations of equation (69) and the earlier assumptions are the following: We are interested 

to see how the estimated expected attrition coefficient a  should be adjusted in case s  changes. 

Simultaneously, we want to make sure that the terminal condition (59) is satisfied. The estimated 

expected attrition coefficient a  is a strictly increasing function of s . In other words; If the attrition 

coefficients contain more stochastic variation, and the terminal size of force X is constant, then the 

estimated value of the expected attrition coefficient increases. 
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Generalization: 

In case the reader prefers a more general version of the theory developed in (68) and (69), we may 

study equation (70). Equations (64) and (67) imply equation (70). The first assumption written in 

equation (70) follows from the earlier assumptions in this paper. The second assumption is that the 

ratio 0

0

y

x
exceeds a particular value, determined by the parameters ( )1,a b . In case  1 0.1b = , 0

0

y

x

should exceed 0.05, to satisfy the constraint, for all 0a  . In case  1 0.2b = , 0

0

y

x
should exceed 0.10, 

to satisfy the constraint, for all 0a  . If the constraint on the initial force ratios is satisfied, then 

equation (69) is satisfied, which is also clear from equation (70). In other words; If the attrition 

coefficients contain more stochastic variation, and the terminal size of force X is constant, then the 

estimated value of the expected attrition coefficient increases. 

( )
( )

( )

( )

2

0 1 2
1 0

0 1 2

0 0 0
2 1

s

s

dE x

dy b dx da
b x

x b a da d dE x

da





  
−  

            =       +        
  

 

 
 
 

(70) 
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X2

0 +h-h
S

The variation in the efficiency of Force Y, ”the attrition parameter a”, increases (from the assumed value 0). 

The expected survival of Force X increases. (This means that the expected attrition by Force Y is reduced.)

However, the terminal value of the size of Force X is an empirical fact and does not change. 

Hence, it is necessary that the expected efficiency of Force Y, ”the attrition parameter a”, increases.

In other words: The true value of the expected attrition parameter ”a” has to increase.

The expected survival of Force X increases. 
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Conclusions:
This study has shown the following:

It is possible to determine the expected attrition coefficients of a battle, if the initial and 

terminal sizes of the forces of the involved parties are known, and the general solution to the 

relevant differential equation system can be derived. 

This means that detailed statistical data tables, representing the time series of the sizes of the 

involved forces, are not necessary. 

This is an important conclusion since it is often very difficult, costly, dangerous and/or 

impossible to get access to detailed and reliable military statistical data, particularly during 

wars that have not yet ended.



49

In the earlier mentioned articles on the battle of Iwo Jima, the authors of those articles 

used different statistical procedures and approximations to estimate the attrition 

coefficients. 

Now, with the new estimation procedure, based on a general differential equation 

system solution and a numerical iteration algorithm, it is possible to rapidly obtain 

almost identical estimates of the attrition parameters.



50

Furthermore, with the new procedure, it is also possible to instantly, in less than a 

second, determine how possible changes of different parameters, such as the not exactly 

known terminal size of the Japanese force, influence the estimated attrition parameters. 

The new procedure automatically reports not only the estimated attrition coefficients, 

but also the equations that describe the dynamics of the involved forces, as explicit 

functions of time.
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The expected size of Force X at a later point in time is a strictly increasing function of 

the risk in the attrition coefficients of Force Y, during earlier points in time. 

If the attrition coefficients of Force Y are stochastic, and the expected attrition 

coefficients are estimated via regression analysis based on the complete detailed time 

series of the involved forces, then the estimated expected attrition coefficients should 

be larger, than if the attrition coefficient estimates are calculated based on the 

assumption that the attrition coefficients never change.
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