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Attrition coefficient estimations via differential equation systems, initial and terminal
conditions, and nonlinear iterative equation system solutions,
by Peter Lohmander, WSTA-2024

ABSTRACT:

In battles with aimed fire, the attrition of a force can under simplified assumptions be shown to be
proportional to the number of enemies. Lanchester models for aimed fire are differential equation systems
that can be applied to describe the dynamics of such battles. In order to determine the attrition coefficients
and the complete dynamics of the battle in continuous time, the following procedure is introduced: First, the
general solution of the Lanchester differential equation system, which is a homogenous second order
differential equation system, is derived. The four parameters of the solution are determined. In these
eqguations, the initial and terminal sizes of the two forces, are parameters. A 4-dimensional fix point iteration
algorithm is developed and implemented as a computer code, that rapidly solves the nonlinear equation
system. After 40 iterations, the absolute relative errors in all equations are smaller than 107(-12) . Then, a
discrete time version of the Lanchester differential equation system, with stochastic attrition coefficients, is
defined as a difference equation system. The effects of increasing risk in the attrition coefficients, that
determine how the time derivative of the size of force X is affected by the size of force Y, at different points in
time, is analyzed. It is shown that the expected size of force X is a strictly convex function of the risk in the
attrition coefficients. According to the Jensen’s inequality, the expected size of force X at time t+2 is a strictly
increasing function of the risk in the attrition coefficients at time t and t+1 for arbitrary values of t. In case the
attrition coefficients in different periods are stochastic, and the system parameters are determined according
to the suggested procedure, then the expected attrition coefficients obtain higher values than if the attrition
coefficients would be constant over time. This can explain differences between attrition coefficient estimates
based on different methods and coefficient risk assumptions.




Abstract Part 1:

* In battles with aimed fire, the attrition of a force can under simplified
assumptions be shown to be proportional to the number of enemies.
Lanchester models for aimed fire are differential equation systems
that can be applied to describe the dynamics of such battles.

* In order to determine the attrition coefficients and the complete
dynamics of the battle in continuous time, the following procedure is
introduced:

* First, the general solution of the Lanchester differential equation
system, which is a homogenous second order differential equation
system, is derived.



Abstract Part 2:

* The four parameters of the solution are determined. In these
equations, the initial and terminal sizes of the two forces, are
parameters.

* A 4-dimensional fix point iteration algorithm is developed and
implemented as a computer code, that rapidly solves the nonlinear
equation system. After 40 |terat|ons the absolute relative errors in all
equations are smaller than 10"



Abstract Part 3:

* Then, a discrete time version of the Lanchester differential equation
system, with stochastic attrition coefficients, is defined as a difference
equation system.

* The effects of increasing risk in the attrition coefficients, that
determine how the time derivative of the size of force X is affected by
the size of force Y, at different points in time, is analyzed.



Abstract Part 4:

* |t is shown that the expected size of force X is a strictly convex function of
the risk in the attrition coefficients.

e According to the Jensen’s inequality, the expected size of force X at time
t+2 is a strictly increasing function of the risk in the attrition coefficients at
time t and t+1 for arbitrary values of t.

* |[n case the attrition coefficients in different periods are stochastic, and the
system parameters are determined according to the suggested procedure,
then the expected attrition coefficients obtain higher values than if the
attrition coefficients would be constant over time.

* This can explain differences between attrition coefficient estimates based
on different methods and coefficient risk assumptions.
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Figure 1.

The dynamically changing size of force X, the force from USA, in the battle of Iwo Jima.
Source: Data reported in Stymfal (2022), based on Engel (1954).
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Figure 2.

The change per day, the difference, of the size of force X, the force from USA, in the battle of
lwo Jima. The graph shows the differences from Day 0 until the end of the battle. The force
difference during Day t, is defined as the size of the force during Day t minus the size of the
force during Day t-1. (In the graph, the size of the force in Day -1 was assumed to be identical
to the size of the force in Day 0.) Reinforcements took place Day 3 and Day 6. Source:
Derivations based on the data reported in Stymfal (2022), based on Engel (1954). 10
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Figure 3.

The change per day, the difference, of the size of force X, the force from USA, in the battle of

Iwo Jima. The graph shows the differences from Day 7 until the end of the battle. The force

difference during Day t, is defined as the size of the force during Day t minus the size of the

force during Day t-1. Hence, the graph is based on data covering the size of the force from

Day 6 until Day 36. Source: Derivations are based on the data reported in Stymfal (2022),

based on Engel (1954). 1



We study the differential equation system (1). There we see how the state of the system, (x,)),
representing the sizes of the two opposing forces, changes over time, {,0<¢{<7T <. The two

parameters, (a,b), are denoted attrition coefficients. Newtonian notation, with time derivatives
marked by dots, is used.

gl W ke (1)

|y =-bx (1.6)

12



From (1.a), we get (2).
ot (2)

y=—a x

Differentiation of (2) with respect to time, gives (3).

i (3)

A

(3) and (1.b) give (4), which can be rewritten as (5) and (6), which is a homogenous second order
differential equation.

.- 4
—a' x=-bx (4

4 (5)

a x—bx=0

(6)

x=uiloe=D

13



Let us assume that the functional form (7) is relevant. The parameters (m, A) are assumed to be
strictly different from zero.

x(t)=me”, m#0,A#0,0<t<T <Ko (7)

Then, the following procedure can be used to determine the state variable as an explicit function of
time. Equations (6) and (7) give (8).

Arme™ —abme™ =0 (8)

Equation (8) can be simplified to (9).

(lz —ab)me’“ =0 (9)

Equations (7) and (9) imply (10).

AP —ab=0 (10)

From the quadratic equation (10), we obtain the solution (11).

A=+Jab (11)
Let r be defined according to (12).

14



Clearly, two solutions exist.

h=-r (13)
A =T (14)
Observation:

a>0Ab>0,aswe seein equation (1), which means that there are two real roots. These roots
have different values. Hence, the general solution of the differential equation is:

x(t)=me" +m,e" (15)
Furthermore, from (2) we already know that: y = —-a' x
As a result, we get (16).
(16)

y(t)y=-a" (—rm,e'” +rm,e” )

The expression (16) may be rewritten as (17).

—rt r rt

- r
y(t) = ST e (17)

15



Hence, the solution to the differential equation system (1) is given in (18).

(x()= me"+ m,e”
J B . (18)
—-rit rt
y@t)= —me ——m,e
\ a a

In order to determine the time path (x(t), y(t)) we need to know the four parameters

(my,m,,a,r).

16



In order to determine the time path (x(t), y(t)) we need to know the four parameters

(m,,m,,a,r).

We may use four boundary conditions to determine these parameters. We already know the initial

and terminal conditions of the system, namely (x,,,)and (x,, ;).

From equation (18), the initial conditions (19) and (20) follow:

x(0)=m, +m, =x,

I

.
yO0)=—m ——m, =y,
a a

The terminal conditions, (21) and (22), are also derived from equation (18):

x(T)=me"" +me" =x,

WT)="me"" =
a

m,e

rT

=yT

(19)

(20)

(21)

(22)
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We may now determine the values of the parameters (ml 3 mz,a,r) . The nonlinear simultaneous

equation system (23) should be solved. We assume that a feasible solution exists and that this
solution is unique.

| m, + m, g (23.a)
me " +me”’  =x, (23.5)

4 gm, —gmz =Y, (23.0) (23)
gm,e”r —gmzerr =Py (23.d)

The solution of the simultaneous equation system can be found via an iteration algorithm, which is
developed here:

The initial guesses of the values of the parameters are given in (24).

(24)

0 0 o -9
(ml,mz,a,r)z(m1 S, 5 T )
: 18



The values of (m,,m,,a,r)are sequentially updated. The iteration number is 7, € {0,1,...,/} . The

value of a parameter, 77, after i iteration steps, is denoted 77" .

(Ec].23.a):>(m{'+l =% —m;) (25)
(Eq.23.b)= (mg*l =% T =T ) 26}
{ & S L
(Eq.23.c):>(a”‘ _H" g )] @)
Yo
(Eq.23d)= (ﬁmz”'e’“r = a,:“ me " — y,.] (28)

From (28), we get (29), (30) and (31). 19



r' A
[ﬁml g "yTJ
l"‘lT: a (29)

( ol \
i+l _—r'T
( ai+l m; e —Jr J
FHAT = LN

'§ i+l (30)
i+l 2
\
(( | )
m i+le—r f y
ai+l 1 1
LN :
I"’ i+l
ai+l mz
i+l \ /
e = (31)

However, even if (31) is mathematically correct, it turns out that the solution to the equation system
(23) sometimes diverges if equation (31) is used directly. This means that if the initial parameter
guesses (24) are not quite correct, the iteration method will not make the solution approach the correct
solution. Fortunately, as will be shown, it is very easy to obtain convergence in the algorithm. In the
modified algorithm, the value of the parameter » changes less rapidly than if equation (31) would be
used directly. The absolute change of r in the adjusted algorithm, is smaller than according to (31), but
the change of r is proportional to the change that would take place if (31) would be directly applied.
In equation (32), the adjustment speed parameter / is introduced.

20



However, even if (31) is mathematically correct, it turns out that the solution to the equation system
(23) sometimes diverges if equation (31) is used directly. This means that if the initial parameter
guesses (24) are not quite correct, the iteration method will not make the solution approach the correct
solution. Fortunately, as will be shown, it is very easy to obtain convergence in the algorithm. In the
modified algorithm, the value of the parameter » changes less rapidly than if equation (31) would be
used directly. The absolute change of rin the adjusted algorithm, is smaller than according to (31), but
the change of r is proportional to the change that would take place if (31) would be directly applied.
In equation (32), the adjustment speed parameter / is introduced.

1+

r'=r +h —r (32)

If h=1, then equation (32) corresponds exactly to (31), and the solution has been observed to
diverge from the equilibrium. In the tested applications, the algorithm converges rapidly if we select

the adjustment speed parameter value 4 =0.3.

21



Summary of the algorithm:

The initial values of the parameters are introduced in equation (33).

(ml,mz,a,r)=(m1°,mg,a°,r°) (33)
The values of (m,,mz,a,r) are sequentially updated. The iteration number is i,i € {0,1,...,1} :
m‘nl - xo _mlz (34)
m* = xre-r‘r _mlme»zr‘r (35)
i i+l i+l
i+l _ r (ml —m, )
= (36)
Yo
-r'T ri i+l
( anl 1 —yT)
LN ,
( rl nl)
— m,
‘ al?l 2
r''=r'+h =pil, =03 (37)
T
)

In case the solution does not converge in some other application, it is suggested that the adjustment
speed parameter / is reduced to some value such that 0 <4 <0.3.

The iteration algorithm in equations (33) to (37), is implemented in the computer code in the numerical
appendix, and used to solve the coefficient estimation problems with empirical data.
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Table 1.

The table shows the initial and terminal conditions and other parameters used in Case 0.

Initial and terminal conditions:

x0 = 66150
y0 = 18000
XT = 352135
yT = 200

Other parameters:

30
e

|
i

Initial values of estimated parameters:

a0 = .02
b0 = .02
r. 0 = .02
ml 0 = 1
m2 0 = 1

23




Table 2.

The table shows how the relative errors in the four equations develop, during the numerical iteration.
The first row corresponds to iteration 1, and the final row corresponds to iteration 40. After 40

iterations, the absolute relative errors are less than 102 in all the four equations.

x0Err yOErr xTErr yTErr
0.131331802328 0.406077556595 —0.066792339286 17.177549422846
0.046942030019 -0.044271399178 -0.001238733534 -2.424737248853
0.009794740047 -0.058589139025 -0.002141770808 —3.292782037948
0.002936436656 —0.035338780938 —-0.000593458710 -1.960769298557
0.000903806604 —-0.017852318448 -0.000083122461 -0.980041705441
0.000246411311 -0.008169564742 0.000011244902 -0.445823156844
0.000054828088 —-0.003498047061 0.000014481506 —0.190341865254
0.000007624910 -0.001430777621 0.000007633629 —0.077753827990
-0.000001114673 -0.000567126973 0.000003306407 —-0.030803137648
-0.000001551748 —-0.000220022137 0.000001326350 —-0.011947749717
-0.000000890008 -0.000084116219 0.000000513592 -0.004567327759
-0.000000414667 -0.000031836318 0.000000195333 -0.001728585582
-0.000000176158 —0.000011966158 0.000000073554 —-0.000649706634
-0.000000071181 -0.000004476115 0.000000027533 —0.000243031058
-0.000000027914 -0.000001668771 0.000000010268 —0.000090605912
-0.000000010741 —-0.000000620696 0.000000003819 —0.000033700634
-0.000000004082 —-0.000000230489 0.000000001418 -0.000012514378
-0.000000001538 —-0.000000085491 0.000000000526 —0.000004641745
-0.000000000577 -0.000000031684 0.000000000195 -0.000001720290
-0.000000000215 —-0.000000011736 0.000000000072 -0.000000637198
-0.000000000080 -0.000000004345 0.000000000027 -0.000000235924
-0.000000000030 -0.000000001608 0.000000000010 -0.000000087327
-0.000000000011 -0.000000000595 0.000000000004 -0.000000032317
—-0.000000000004 —-0.000000000220 0.000000000001 —0.000000011958
-0.000000000002 -0.000000000081 0.000000000001 -0.000000004424
-0.000000000001 —-0.000000000030 0.000000000000 -0.000000001637
-0.000000000000 -0.000000000011 0.000000000000 -0.000000000605
-0.000000000000 -0.000000000004 0.000000000000 —-0.000000000224
-0.000000000000 -0.000000000002 0.000000000000 -0.000000000083
-0.000000000000 -0.000000000001 0.000000000000 —0.000000000031
-0.000000000000 —0.000000000000 0.000000000000 -0.000000000011
-0.000000000000 -0.000000000000 0.000000000000 —-0.000000000004
-0.000000000000 —0.000000000000 0.000000000000 -0.000000000002
-0.000000000000 -0.000000000000 0.000000000000 —-0.000000000001
0.000000000000 -0.000000000000 0.000000000000 —-0.000000000000
0.000000000000 —-0.000000000000 0.000000000000 -0.000000000000
0.000000000000 -0.000000000000 0.000000000000 -0.000000000000
0.000000000000 0.000000000000 0.000000000000 0.000000000000
0.000000000000 0.000000000000 0.000000000000 0.000000000000
0.000000000000 0.000000000000 0.000000000000 0.000000000000
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Table 3.

The table shows the estimated parameter values of Case 0.

a = 5.347041320955464D-02
b = .0104491786465644
r = 2.363729891362914D-02
ml = 53434.08250957198

m2 12715.91749042803

25



Table 4.

The table shows the estimated force equations of Case 0.

x(t) 53434.083 % EXP(-0.02363730 = t ) + 12715.917 » EXP( 0.02363730 » t )

23621.238 x EXP(-0.02363730 * t ) - 5621.238 * EXP( 0.02363730 *» t )

y(t)

26
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Figure 4.

Size of the force from USA, according to the true (empirical) time series and according to the
model version FO_USA. 27
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Sizes of the forces from USA and Japan, according to the models FO_USA and FO_Japan. 28
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Figure 6.

Sizes of the forces from USA and from Japan, according to different assumptions concerning
the size of the Japanese force at the end of the battle, Yr. In Case 0, Yr =200, in Case 1, Yr =
100, and in Case 2, Yr=300. In Case 0, we have FO_USA and FO_Japan. In Case 1, we get F1_USA
and F1_Japan. Case 2 gives F2_USA and F2_Japan.
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Differences of the size of the force from Japan from Case 0, according to different assumptions
concerning the size of the Japanese force at the end of the battle, Yr. In Case 0, Yr =200, in
Case 1, Y7 =100, and in Case 2, Y7 =300. In Case 0, we have FO_USA and FO_Japan. In Case 1,

we get F1_USA and F1_Japan. Case 2 gives F2_USA and F2_Japan. 20
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Differences of the size of the force from USA from Case 0, according to different assumptions
concerning the size of the Japanese force at the end of the battle, Yr. In Case 0, Yr =200, in
Case 1, Y7 =100, and in Case 2, Y1 =300. In Case 0, we have FO_USA and FO_Japan. In Case 1,
we get F1_USA and F1_Japan. Case 2 gives F2_USA and F2_Japan.
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Table 5.

Different estimations of the attrition coefficient values.

Estimated Estimated R2

value of a value of b
Lohmander Case O 0.05347 0.01045 0.99997
Lohmander Case 1 0.05379 0.01051 0.99997
Lohmander Case 2 0.05315 0.01039 0.99997
Engel (1954) 0.0544 0.0106 0.9937
Braun (1993) via Engel (1954) | 0.0544 0.0106 No information
Washburn and Kress (2009) 0.0544 0.0106 No information
via Engel (1954)
Stymfal (2022) 0.0532 0.0105 0.9944
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Parameter estimation based on discrete time and stochastic outcomes

a,>0Ab >0Ax >0y, >0, te{01..T} (38)
_ta
=" (39)

We can express the time dependent attrition coefficients as (40) and (41).

a, =a+Ss (40)

a=a-s (41)



The coordinates at time 1 are (Xt, yt) . These are recursively determined in (42) to (45).

AX, =X =X, = =8Y,
Ay, = Yi— Yo :_blxl
AX, =X, =X =—-aY,

Ayz =Y, %= —b2X2

(42)

(43)

(44)

(45)



The recursion (42) to (45) can be described as (46) to (49).

X=X~ Yo

W:%_QM

X, =X —aY

Yo=Y — b2X2

(46)

(47)

(48)

(49)



Now, we can determine how X, is affected by changing properties of the stochastic variable S .

From (46) and (48), we get (50). Via the earlier equations, (50) is further developed to (51).

X, = (% = 8Yo) — @Y,

% =(% = (a+3)y) = (a=3)(Yo b (% ~ Yo )

X =% —(a+s)y,—(a=s)y, +(a=s)b (% —(a+s)y,)
X, =X, =28y, +(a—3)bx, —(a—s)(a+s)by,

X, =(1+(a=s)b)x, —(2a+(a2 —sz)bl)y0

(50)

(51)

(52)

(53)

(54)



X, =(1+(a-s)b, ) x,—(2a+(a" -s*)b;) y, (54)
dx

d_szz_leO +2b1yOS (55)
d*x

d522 =20y, >0 (56)

Observation:

X, may be regarded as a function of many parameters, including S. Compare equation (54). In

equations (57) and (58), we simplify notation and write XZ(S). According to equation (56), X, is a
strictly convex function of S. From the Jensen’s inequality (Jensen (1906)), we get the equations (57)
and (58).

E(x,(s))>%(E(s)), ifs’>0 (57)

E(X,(s))=%(E(s)), ifs’=0 (58)



X, (E(S))

*
*
*
*
*
*
*
.
*
*
*
*
*
*
*
*
.
*
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*
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Terminal condition as expected value:

In a 2- period problem, we have the terminal condition found in equation (59). The expected value of

X, is written as a function of (&,S), where S is a function of the standard deviation of S, O, .

E(x2 (a,s(és))) = X, (59)

We are interested to see how the estimated a should be adjusted in case we know that O increases,

and we simultaneously want to make sure that the terminal condition (59) is satisfied.

Total differentiation gives equation (60). Clearly, as we see in equation (61), we cannot change the
already known terminal value of the state variable.

dE(x,) dE(x,)
— = da+——==do, —dx; =0

S

dx. =0 (61)



Equations (60) and (61) lead to (62), which can be rewritten as (63).

dE(x,) dE(x,)

d 45 =0
da o do, O (62)
dE(@) dE(@)
da=— ds
da o7 a5 (63)

The derivative of the parameter a, the estimated expected attrition coefficient, with respect to the

standard deviation of the attrition coefficient, 58 , is found in equation (64).

da _ [(dE(z(gxz)))) (64)
ds,  (dE(x,

da




In order to determine the sign of the derivative in equation (64), must know the sign of the derivative
of X, with respect to &, which is found in (65). Equation (65) can be reformulated to (66) and (67).

dx,

da =-2Y, +0bx, —2by,a (65)
dx, v (1
qa Yo (1+0a)+hyx, (66)

dX2 (1+ b]a) y
—= =P X,| -2 0 +1
da ' O[ X, (67)



Equation (68) shows a combination of three different assumptions, which makes sure that the sign of

the derivative of X, with respect to a is strictly negative. The first listed assumption follows from the

earlier assumptions in this paper. The second assumption is satisfied in case b1 <0.1, which is normal

in most battles. (Compare the attrition coefficient values is Table 5.) The third assumption is a constraint
on the ratio between the sizes of the initial forces: The initial size of force Y is at least 5% of the initial
size of force X. That assumption is probably relevant in almost all real battles. Compare the initial force
sizes reported in Table 1. In case the assumptions in (68) are true, then equation (69) follows.

1
(b1x0>0)/\[%>10]/\[2i0§ﬁ}:>%<0 (68)

_(dE(xz)j
O/\M<O):> da do, >0 (69)

e

da



(dE(xz) dE (x,) )j da _LdEd((;s(Z)LO (69)

—— 22> 0A——22<0 =
do, da do, dE(xz)
da

Some interpretations of equation (69) and the earlier assumptions are the following: We are interested
to see how the estimated expected attrition coefficient a should be adjusted in case 53 changes.
Simultaneously, we want to make sure that the terminal condition (59) is satisfied. The estimated

expected attrition coefficient a is a strictly increasing function of 53. In other words; If the attrition

coefficients contain more stochastic variation, and the terminal size of force X is constant, then the
estimated value of the expected attrition coefficient increases.



Generalization:

In case the reader prefers a more general version of the theory developed in (68) and (69), we may
study equation (70). Equations (64) and (67) imply equation (70). The first assumption written in
equation (70) follows from the earlier assumptions in this paper. The second assumption is that the

Yo

ratio — exceeds a particular value, determined by the parameters (a, bl). In case b1 =0.1, Yo
X X
0 0

should exceed 0.05, to satisfy the constraint, for all a=>0. In case b1 =0.2, Yo should exceed 0.10,
X
0
to satisfy the constraint, for all a>0. If the constraint on the initial force ratios is satisfied, then
equation (69) is satisfied, which is also clear from equation (70). In other words; If the attrition
coefficients contain more stochastic variation, and the terminal size of force X is constant, then the
estimated value of the expected attrition coefficient increases.

_(dE(xz)]

Y, b, dx, da do,

(blx°>0){xo >2(1+b1a)J:>(E<Oj:> a5 (dE(xz)] >0 70)
da
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The variation in the efficiency of Force Y, “"the attrition parameter a”, increases (from the assumed value 0).
The expected survival of Force X increases. (This means that the expected attrition by Force Y is reduced.)
However, the terminal value of the size of Force X is an empirical fact and does not change.

Hence, it is necessary that the expected efficiency of Force Y, “the attrition parameter a”, increases.

In other words: The true value of the expected attrition parameter “a” has to increase. 47



Conclusions:

This study has shown the following:

It is possible to determine the expected attrition coefficients of a battle, if the initial and
terminal sizes of the forces of the involved parties are known, and the general solution to the
relevant differential equation system can be derived.

This means that detailed statistical data tables, representing the time series of the sizes of the
involved forces, are not necessary.

This is an important conclusion since it is often very difficult, costly, dangerous and/or
impossible to get access to detailed and reliable military statistical data, particularly during
wars that have not yet ended.



In the earlier mentioned articles on the battle of Iwo Jima, the authors of those articles
used different statistical procedures and approximations to estimate the attrition
coefficients.

Now, with the new estimation procedure, based on a general differential equation
system solution and a numerical iteration algorithm, it is possible to rapidly obtain
almost identical estimates of the attrition parameters.



Furthermore, with the new procedure, it is also possible to instantly, in less than a
second, determine how possible changes of different parameters, such as the not exactly
known terminal size of the Japanese force, influence the estimated attrition parameters.

The new procedure automatically reports not only the estimated attrition coefficients,
but also the equations that describe the dynamics of the involved forces, as explicit

functions of time.



The expected size of Force X at a later point in time is a strictly increasing function of
the risk in the attrition coefficients of Force Y, during earlier points in time.

If the attrition coefficients of Force Y are stochastic, and the expected attrition
coefficients are estimated via regression analysis based on the complete detailed time
series of the involved forces, then the estimated expected attrition coefficients should
be larger, than if the attrition coefficient estimates are calculated based on the
assumption that the attrition coefficients never change.



Thank you for your time!

r a very nice conference!

Thank you also fo

P Io:eter Lohmander
www.lohmander.com/Information/Ref.htm



https://www.lohmander.com/Information/Ref.htm

Attrition coefficient estimations

via differential equation systems, initial and
terminal conditions, and nonlinear iterative
equation system solutions

by
Peter Lohmander

WSTA-2024

Peter Lohmander

Recent Trends in Statistical Theory and Applications-2024 (WSTA-2024)

_ Prof Dr
June 29 — July 02, 2024, Invited Talk.
Organized by the Department of Statistics, School of Physical and Peter Lohmander Optimal
Mathematical Sciences, University of Kerala, Trivandrum in association Solutions, Sweden

with Indian Society for Probability and Statistics (ISPS) and Kerala Statistical
Association (KSA).

Version 240624 2337

53 l



	Slide 1: Attrition coefficient estimations  via differential equation systems, initial and terminal conditions, and nonlinear iterative equation system solutions  by Peter Lohmander
	Slide 2: Attrition coefficient estimations via differential equation systems, initial and terminal conditions, and nonlinear iterative equation system solutions,  by Peter Lohmander, WSTA-2024
	Slide 3: Abstract Part 1:
	Slide 4: Abstract Part 2:
	Slide 5: Abstract Part 3:
	Slide 6: Abstract Part 4:
	Slide 7: Empirical data:  The Battle of Iwo Jima during World War II:
	Slide 8: The Battle of Iwo Jima:  (AI generated picture)
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Attrition coefficient estimations  via differential equation systems, initial and terminal conditions, and nonlinear iterative equation system solutions  by Peter Lohmander

