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Optimal adaptive stochastic control of large scale energy production under the influence of market risk
Peter Lohmander

Abstract

The global energy market prices may be considered as stochastic processes. These prices may be 
strongly influenced (partly controlled) by large producers and cartels, since production levels 
influence the price level. Under such conditions, optimal dynamic production plans have to be 
optimized using adaptive controls, derived via stochastic control theory and/or stochastic dynamic 
programming. This paper presents alternative modelling options and a detailed analysis of a sample 
problem. It is possible to use stochastic dynamic programming as a master problem in combination 
with detailed multidimensional solutions to production and logistics problems for each state and 
stage. This can be done in finite time and also in infinite time, via stochastic dynamic programming 
in Markov chains with linear programming as a solution method. A sample problem is defined as a 
stochastic dynamic programming problem for optimal adaptive control of energy production under 
the influence of market risk and energy reserve constraints. General results concerning how the 
optimal adaptive production decisions and expected resource values are affected by increasing risk 
in the energy markets are reported. The main results are presented in connection to the present 
modelling results. General conclusions are presented and suggestions for future research are given.

Keywords: Optimal adaptive control; Stochastic dynamic programming; Market adapted oil 
production.
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Optimal oil extraction
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Optimal 
domestic
oil logistics
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Optimal international trade and 
oil logistics
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Optimal oil industry management
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The global energy market prices may be considered 
as stochastic processes.

Since the stochastic properties of these prices are
of fundamental importance to optimal 

management of
energy companies and to the economy in general,

we start by investigating them.   
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Source of oil prices:

https://www.eia.gov/dnav/pet/pet_pri_spt_s1_m.htm

(The following graphs will show annual averages.)
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Inflation adjustments via CPI:

http://www.bls.gov/cpi/cpid1601.pdf
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The global energy market prices may be considered as stochastic 
processes. 
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What method is used by EIA to calculate the 
probabilities?

• Option prices are used to determine the parameters of a probability
density function (and indirectly the probabilities of the oil price to be 
higher or lower than different limits.)

• Of course, one could also use other methods. For instance, one could
look at the distribution of errors of price predictions in earlier
periods.
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On the next pages, some sections are copied from:
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• Confidence intervals for expected prices can be calculated using a variety 
of alternative techniques, including estimates based on past price 
volatility, statistical analysis of past forecast errors, or estimates of 
parameter uncertainty in an econometric energy price forecasting 
equation.  

• Such backward-looking approaches, notwithstanding their merits, cannot 
reflect changes in current market conditions and expectations that may 
lead to greater or lesser uncertainty about the future at any given time.

• The STEO (Short-Term Energy Outlook) will instead focus on a measure of 
uncertainty derived from the New York Mercantile Exchange (NYMEX) light 
sweet crude oil options and natural gas options markets.  
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• EIA will derive confidence intervals around expected futures prices 
using the “implied volatilities” of these options.  Implied volatility is 
nothing more than a standard deviation for expected returns 
embedded in the option’s price.  

• If an option’s price is observed in the market, then a pricing model 
can be “run backwards” to calculate the volatility embedded in that 
price.  This represents a market-cleared estimate of implied volatility, 
i.e., a buyer and seller have agreed on the value of an option.
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• A particular type of random walk is assumed in the B-S-M and Black 
models, known as a geometric Wiener process.

• In such a process, the likelihood of a 1-percent upward move in an 
asset’s  price is equal to the likelihood of a 1-percent downward move 
over a very small time increment.  

• The most an asset can lose is 100% of its value (i.e., the price 
distribution is bounded at zero).

• This means returns would be normally distributed, with constant 
volatility, while absolute prices would be log-normally distributed at 
the option’s expiry. 
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• The lognormal assumption for asset prices, which translates into a 
normal assumption for log returns, has been a source of debate since 
at least the early 1960s.  

• Numerous researchers have noted the distribution of daily returns of 
many assets is leptokurtic, i.e., “fat-tailed” and peaked.  
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Option theory for uniform probability density
functions by Peter Lohmander
(Motivated by international prices of crude oil)

The parameters of a uniform price probability density function may be derived via European call option 
prices. The rate of interest in the capital market is r and t is the time until the option expires. 
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Option price
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Probability density function
of the oil price

Oil price
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Option price = Expected
value of the option

We assume a uniform 
probability
density function.
Expected price = m. 
Maximum deviation, 
up or down, is h.
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The option price is a strictly increasing function of the price
standard deviation, which is a strictly increasing function of h. 
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Let us derive the value of h (which can give the 
standard deviation etc.) from the option price! 
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This formula gives the ”spread parameter” h 
of a uniform price probability density function.

m-h = lowest possible price
m+h = highest possible price
y = option price
q = strike price
m = expected price
r = rate of interest
t = time until expiration
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https://www.eia.gov/forecasts/steo/uncertainty/pdf/uncertainty_past_wti.pdf
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Obs!
The following two graphs are derived via 
lognormal price probability density function
assumptions.
Comment by Peter Lohmander
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Please note that several alternative interpretations
of the graph on the next slide can be made.

Peter Lohmander
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https://www.eia.gov/finance/markets/supply-opec.cfm 
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Energy prices may be strongly influenced (partly controlled) by large 
producers and cartels, since production levels influence the price level.

Under such conditions, optimal dynamic production plans have to be 
optimized using adaptive controls, derived via stochastic control theory 
and/or stochastic dynamic programming. 

This paper presents alternative modelling options and a detailed analysis of a 
sample problem. 

It is possible to use stochastic dynamic programming as a master problem in 
combination with detailed multidimensional solutions to production and 
logistics problems for each state and stage. 
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This can be done in finite time and also in infinite time, via stochastic 
dynamic programming in Markov chains with linear programming as a 
solution method. 
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A sample problem is defined as a stochastic dynamic programming 
problem for optimal adaptive control of energy production under the 
influence of market risk and energy reserve constraints. 
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General results concerning how the optimal adaptive production 
decisions and expected resource values are affected by increasing risk 
in the energy markets are reported. 

The main results are presented in connection to the present modelling 
results. 
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Table 1 – Optimal extraction table for t = 0.
We find that the optimal extraction level is an increasing function of the 
market state and of the size of the remaining reserve. 
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Table 2 – Optimal expected present value table for t = 0.
The optimal expected present value is an increasing function of the 
market state and of the size of the remaining reserve. 
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Optimal decisions in period 0 and 5:

• Table 3 contains similar information as Table 1. However, in Table 3, we have 
reached period 5. 

• The general tendencies are the same in period 0 and period 5, but in period 5 
we should extract more of the resource than in period 0, in case the market state 
and the reserve level are the same.

• This is understandable, since in period 5, the number of remaining periods is 
lower. 

• Hence, the probability that we will be able to sell the resource at a much higher 
price in the future is reduced. 

• Furthermore, if we plan to strongly increase extraction in the near future, this will 
reduce the price level very much. 

• For these reasons, it is better to extract more of the resource in period 5, even if 
the prices are not very good and even if we have not a very large remaining 
resource.    
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Table 3 – Optimal extraction table for t = 5.
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Optimal expected present values in period 0 
and 5:
• Table 4 corresponds to Table 2, but we have now reached period 5.

• The optimal expected present values are still increasing functions of the 
market state and the size of the remaining reserve, but all values are 
lower than the corresponding values in period 0. 

• There are several reasons for this: 

• Discounting during five years reduces all profits. 

• Furthermore, since a lower number of periods remain, the number of 
options to extract during very good market states has decreased. 

• Finally, the remaining reserve has to be distributed over a lower number of 
periods, which gives more negative effects on the price level.   
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Table 4 – Optimal expected present value table for t = 5.
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Optimal oil industry management
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! OptOil 160219

Peter Lohmander ;

model:

sets:

time/1..7/: year,d;

stock/1..11/:;

market/1..9/:;

sm(stock, market):;

tsm(time, stock, market): f, hopt, prof;

endsets

submodel initial:

@for(time(t): year(t)=t-1;

d(t)=@exp(-.05*(t-1))

);

@for(tsm(t,s,m): 

f(t,s,m) = 0;

hopt(t,s,m)=0;

prof(t,s,m)=0;

);

endsubmodel
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submodel loc1:

max = locobj;

locobj = dloc*p*h + fnext;

h = hloc;

p = 30+(mloc-5)-h;

endsubmodel

submodel loc2:

max = locobj;

locobj = dloc*(p1*x1 + p2*x2) + fnext;

x1+x2 <= hloc;

x1 <= 2;

x2 <= 1;

p1 = 30+(mloc-5)-x1;

p2 = 26-0.5*x2;

endsubmodel
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calc:

@set( 'TERSEO', 2);   

@solve(initial);

TMAX = 7;

tloc = TMAX;

@while(tloc #GE#2: 

tloc = tloc-1;

@write(@newline(1));

@for(stock(s):

hmax = s-1;

@for(market(m):

m1 = m;   

h=-1;

@while(h #LT# hmax:

h = h+1;

fnext = 0;

m2 = 0;

@while(m2 #LT# 9:

m2 = m2 + 1;

fnext = fnext + 1/9*f(tloc+1, s-h, m2);

);

hloc = h;

mloc = m;

dloc = d(tloc);

@solve(loc2);

@ifc(locobj #GT# f(tloc,s,m): 

f(tloc,s,m) = locobj;

hopt(tloc,s,m) = hloc);

);

);

);

);

The MAIN STDP LOOP

Since the format of this
section is very small,
the next pages include the 
details in large format.
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calc:

@set( 'TERSEO', 2);   

@solve(initial);

TMAX = 7;

tloc = TMAX;

@while(tloc #GE#2: 

tloc = tloc-1;

@write(@newline(1));

@for(stock(s):

hmax = s-1;
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@for(market(m):

m1 = m;   

h=-1;

@while(h #LT# hmax:

h = h+1;
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fnext = 0;

m2 = 0;

@while(m2 #LT# 9:

m2 = m2 + 1;

fnext = fnext + 1/9*f(tloc+1, s-h, m2);

);
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hloc = h;

mloc = m;

dloc = d(tloc);

@solve(loc2);

@ifc(locobj #GT# f(tloc,s,m): 

f(tloc,s,m) = locobj;

hopt(tloc,s,m) = hloc);

);

);

);

);
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@write (@NEWLINE(1));

@write ( 'OptOil by Peter Lohmander 2016-02-19', @Newline(1));

@write ( @newline(2),'Optimal expected present values', @Newline(2));

@for(time(t2):

@write ( @newline(1), 'Year = ', year(t2), @Newline(1));

@write ('Reserve =       ');

@writefor(stock(s):@format(s-1, '5.0f'));

@write(@newline(2)); 

@for(market(m): 

@write('Market = ', @format(m, '3.0f'));

@write('    ');

@writefor(stock(s): @format(f(t2,s,m), '5.0f'));

@write(@newline(1)); 

);

@write(@newline(1)); 

);
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@write ( @newline(2),'Optimal extraction levels', @Newline(2));

@for(time(t2):

@write (@newline(1), 'Year = ', year(t2), @Newline(1));

@write ('Reserve =       ');

@writefor(stock(s):@format(s-1, '5.0f'));

@write(@newline(2)); 

@for(market(m): 

@write('Market = ', @format(m, '3.0f'));

@write('    ');

@writefor(stock(s): @format(hopt(t2,s,m), '5.0f'));

@write(@newline(1)); 

);

@write(@newline(1)); 

);

endcalc
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CASE 1.

Price is stochastic and exogenous. 
p = 30+(m-5)

p is not affected by the production level. 
There is only one product: Crude oil.
There are no production constraints.

Optimal decisions:
If the price is above the "reservation price", you
instantly extract everything. 

In the final period, you extract everything, irrespective
of the price level.
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Optimal extraction levels

Year = 0
Reserve =           0    1    2    3    4    5    6    7    8    9   10

Market =   1        0    0    0    0    0    0    0    0    0    0    0
Market =   2        0    0    0    0    0    0    0    0    0    0    0
Market =   3        0    0    0    0    0    0    0    0    0    0    0
Market =   4        0    0    0    0    0    0    0    0    0    0    0
Market =   5        0    1    2    3    4    5    6    7    8    9   10
Market =   6        0    1    2    3    4    5    6    7    8    9   10
Market =   7        0    1    2    3    4    5    6    7    8    9   10
Market =   8        0    1    2    3    4    5    6    7    8    9   10
Market =   9        0    1    2    3    4    5    6    7    8    9   10

76



Year = 5
Reserve =           0    1    2    3    4    5    6    7    8    9   10

Market =   1        0    1    2    3    4    5    6    7    8    9   10
Market =   2        0    1    2    3    4    5    6    7    8    9   10
Market =   3        0    1    2    3    4    5    6    7    8    9   10
Market =   4        0    1    2    3    4    5    6    7    8    9   10
Market =   5        0    1    2    3    4    5    6    7    8    9   10
Market =   6        0    1    2    3    4    5    6    7    8    9   10
Market =   7        0    1    2    3    4    5    6    7    8    9   10
Market =   8        0    1    2    3    4    5    6    7    8    9   10
Market =   9        0    1    2    3    4    5    6    7    8    9   10
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Optimal expected present values

Year = 0
Reserve =           0    1    2    3    4    5    6    7    8    9   10

Market =   1        0   29   59   88  117  146  176  205  234  263  293
Market =   2        0   29   59   88  117  146  176  205  234  263  293
Market =   3        0   29   59   88  117  146  176  205  234  263  293
Market =   4        0   29   59   88  117  146  176  205  234  263  293
Market =   5        0   30   60   90  120  150  180  210  240  270  300
Market =   6        0   31   62   93  124  155  186  217  248  279  310
Market =   7        0   32   64   96  128  160  192  224  256  288  320
Market =   8        0   33   66   99  132  165  198  231  264  297  330
Market =   9        0   34   68  102  136  170  204  238  272  306  340
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CASE 2.

Price is stochastic and partly endogenous. 
p = 30+(m-5)-h

There is only one product: Crude oil.
There are no production constraints.

Optimal decisions:
The optimal extraction level is an increasing function of the 
state of the market and of the size of the remaining reserve.

In the final period, you extract everything, irrespective of
the price level.
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Optimal extraction levels

Year = 0
Reserve =           0    1    2    3    4    5    6    7    8    9   10

Market =   1        0    0    0    0    0    1    1    1    1    1    2
Market =   2        0    0    0    0    1    1    1    1    2    2    2
Market =   3        0    0    0    1    1    1    2    2    2    2    2
Market =   4        0    0    1    1    1    2    2    2    2    3    3
Market =   5        0    1    1    1    2    2    2    3    3    3    3
Market =   6        0    1    1    2    2    2    3    3    3    3    4
Market =   7        0    1    2    2    2    3    3    3    4    4    4
Market =   8        0    1    2    2    3    3    3    4    4    4    4
Market =   9        0    1    2    3    3    3    4    4    4    5    5
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Optimal expected present values

Year = 0
Reserve =           0    1    2    3    4    5    6    7    8    9   10

Market =   1        0   28   55   81  107  132  157  181  205  228  251
Market =   2        0   28   55   81  107  133  158  182  206  230  253
Market =   3        0   28   55   82  108  134  159  184  208  232  255
Market =   4        0   28   56   83  109  135  161  186  210  234  258
Market =   5        0   29   57   84  111  137  163  188  213  237  261
Market =   6        0   30   58   86  113  139  165  191  216  240  264
Market =   7        0   31   60   88  115  142  168  194  219  244  268
Market =   8        0   32   62   90  118  145  171  197  223  248  272
Market =   9        0   33   64   93  121  148  175  201  227  252  277
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CASE 3.

submodel loc2:
max = locobj;
locobj = d*(p1*x1 + p2*x2) + fnext;
x1+x2 <= h;
p1 = 30+(m-5)-x1;
p2 = 26-0.0*x2;
endsubmodel

There are two products, x1 (Crude oil) and x2 (refined).

p1 is highly dependent on the stochastic market and very volume sensitive.

p2 is constant and insensitive to production volume.

There are no capacity limitations.
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Optimal decisions (in Case 3):

If the remaining reserve level is very high, you should
extract large quantitites and produce large volumes of x2.

If the remaining reserve level is low, you should use most
of it for x1, waiting for good levels of p1.  

In the final period, you extract everything, irrespective
of price.  
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Optimal extraction levels

Year = 0
Reserve =           0    1    2    3    4    5    6    7    8    9   10

Market =   1        0    0    0    0    1    2    3    4    5    6    7
Market =   2        0    0    0    1    1    2    3    4    5    6    7
Market =   3        0    0    0    1    1    2    3    4    5    6    7
Market =   4        0    0    1    1    2    2    3    4    5    6    7
Market =   5        0    1    1    1    2    2    3    4    5    6    7
Market =   6        0    1    1    2    2    3    3    4    5    6    7
Market =   7        0    1    2    2    2    3    3    4    5    6    7
Market =   8        0    1    2    2    3    3    4    4    5    6    7
Market =   9        0    1    2    3    3    3    4    4    5    6    7
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Optimal expected present values

Year = 0
Reserve =           0    1    2    3    4    5    6    7    8    9   10

Market =   1        0   28   55   81  107  133  159  185  211  237  263
Market =   2        0   28   55   82  108  134  160  186  212  238  264
Market =   3        0   28   55   82  108  134  160  186  212  238  264
Market =   4        0   28   56   83  110  136  162  188  214  240  266
Market =   5        0   29   57   84  111  137  163  189  215  241  267
Market =   6        0   30   58   86  113  140  166  192  218  244  270
Market =   7        0   31   60   88  115  142  168  194  220  246  272
Market =   8        0   32   62   90  118  145  172  198  224  250  276
Market =   9        0   33   64   93  121  148  175  201  227  253  279

85



CASE 4.
submodel loc2:
max = locobj;
locobj = d*(p1*x1 + p2*x2) + fnext;
x1+x2 <= h;
p1 = 30+(m-5)-x1;
p2 = 26-0.5*x2;
endsubmodel

There are two products, x1 (Crude oil) and x2 (refined).
p1 is highly dependent on the stochastic market and very volume sensitive.
p2 is not stochastic but sensitive to production volume.
There are no capacity limitations.
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Optimal decisions (in Case 4):

If the remaining reserve level is very high, you should
produce rather high volumes of x2.

If the remaining reserve level is low, you should use
most of it for x1, waiting for good levels of p1.  

In the final period, you extract everything, 
irrespective of price.  
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Optimal extraction levels

Year = 0
Reserve =           0    1    2    3    4    5    6    7    8    9   10

Market =   1        0    0    0    0    1    1    2    2    2    3    3
Market =   2        0    0    0    1    1    1    2    2    3    3    3
Market =   3        0    0    0    1    1    2    2    3    3    3    4
Market =   4        0    0    1    1    2    2    2    3    3    4    4
Market =   5        0    1    1    1    2    2    3    3    4    4    4
Market =   6        0    1    1    2    2    3    3    3    4    4    5
Market =   7        0    1    2    2    2    3    3    4    4    5    5
Market =   8        0    1    2    2    3    3    4    4    4    5    5
Market =   9        0    1    2    3    3    3    4    4    5    5    6
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Optimal expected present values

Year = 0
Reserve =           0    1    2    3    4    5    6    7    8    9   10

Market =   1        0   28   55   81  107  133  158  183  207  231  256
Market =   2        0   28   55   82  108  133  158  183  208  233  257
Market =   3        0   28   55   82  108  134  160  185  210  234  258
Market =   4        0   28   56   83  110  136  161  186  211  236  261
Market =   5        0   29   57   84  111  137  163  189  214  239  263
Market =   6        0   30   58   86  113  140  166  191  216  241  266
Market =   7        0   31   60   88  115  142  168  194  220  245  270
Market =   8        0   32   62   90  118  145  172  198  223  248  273
Market =   9        0   33   64   93  121  148  175  201  227  253  278
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submodel loc2:                                   CASE 5.
max = locobj;
locobj = d*(p1*x1 + p2*x2) + fnext;
x1+x2 <= h;
x1 <= 2;
x2 <= 1;
p1 = 30+(m-5)-x1;
p2 = 26-0.5*x2;
endsubmodel

There are two products, x1 (Crude oil) and x2 (refined).
p1 is highly dependent on the stochastic market and very volume
sensitive.
p2 is not stochastic but sensitive to production volume.
The production levels of of x1 and x2 have capacity constraints.
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Optimal decisions (in Case 5):

If the remaining reserve level is very high, you should produce
x2 at the capacity limit.

If the remaining reserve level is low, you should use most of it 
for x1, waiting for good levels of p1.  

In the final period, you extract as much as possible,
considering the capacity limitations, irrespective of price.

In periods close to the final period, the expected optimal 
present values are strongly reduced by the production capacity
limitations, in case the remaining reserve is large.  
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Optimal extraction levels

Year = 0
Reserve =           0    1    2    3    4    5    6    7    8    9   10

Market =   1        0    0    0    0    1    1    2    2    2    2    2
Market =   2        0    0    0    1    1    2    2    2    2    3    3
Market =   3        0    0    0    1    1    2    2    3    3    3    3
Market =   4        0    0    1    1    2    2    3    3    3    3    3
Market =   5        0    1    1    1    2    2    3    3    3    3    3
Market =   6        0    1    1    2    2    2    3    3    3    3    3
Market =   7        0    1    2    2    2    2    3    3    3    3    3
Market =   8        0    1    2    2    2    2    3    3    3    3    3
Market =   9        0    1    2    2    2    2    3    3    3    3    3

92



Year = 5
Reserve =           0    1    2    3    4    5    6    7    8    9   10

Market =   1        0    1    2    3    3    3    3    3    3    3    3
Market =   2        0    1    2    3    3    3    3    3    3    3    3
Market =   3        0    1    2    3    3    3    3    3    3    3    3
Market =   4        0    1    2    3    3    3    3    3    3    3    3
Market =   5        0    1    2    3    3    3    3    3    3    3    3
Market =   6        0    1    2    3    3    3    3    3    3    3    3
Market =   7        0    1    2    3    3    3    3    3    3    3    3
Market =   8        0    1    2    3    3    3    3    3    3    3    3
Market =   9        0    1    2    3    3    3    3    3    3    3    3
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Optimal expected present values

Year = 0
Reserve =           0    1    2    3    4    5    6    7    8    9   10

Market =   1        0   28   55   81  107  132  157  182  206  229  253
Market =   2        0   28   55   82  108  133  158  183  207  231  254
Market =   3        0   28   55   82  108  134  159  184  209  233  256
Market =   4        0   28   56   83  110  136  161  186  211  235  258
Market =   5        0   29   57   84  111  137  163  188  213  237  260
Market =   6        0   30   58   86  113  139  165  190  215  239  262
Market =   7        0   31   60   88  115  141  167  192  217  241  264
Market =   8        0   32   62   90  117  143  169  194  219  243  266
Market =   9        0   33   64   92  119  145  171  196  221  245  268
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Year = 5
Reserve =           0    1    2    3    4    5    6    7    8    9   10

Market =   1        0   20   39   57   57   57   57   57   57   57   57
Market =   2        0   20   40   59   59   59   59   59   59   59   59
Market =   3        0   21   41   60   60   60   60   60   60   60   60
Market =   4        0   22   42   62   62   62   62   62   62   62   62
Market =   5        0   23   44   63   63   63   63   63   63   63   63
Market =   6        0   23   45   65   65   65   65   65   65   65   65
Market =   7        0   24   47   67   67   67   67   67   67   67   67
Market =   8        0   25   48   68   68   68   68   68   68   68   68
Market =   9        0   26   50   70   70   70   70   70   70   70   70
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General conclusions

• Stochastic dynamic programming is a fantastic method that can be used in many 
highly relevant problems, in particular with stochastic market prices and adaptive 
production decisions. 

• A common opinion is however that the “curse of dimensionality” makes it 
impossible to handle relevant real world problems with this method. For this 
reason, several attempts have been made to develop alternative approaches. 

• In the light of this situation, the author suggests the use of stochastic dynamic 
programming as a master problem combined with linear programming or 
quadratic programming solutions to optimal decisions at each stage and state. 

• This makes it possible to keep the real stochastic structure of the problem and to 
optimize the relevant adaptive production level decisions. 

• At the same time, any level of detail can be handled in the many production and 
logistics oriented decisions at lower levels. 

• These approaches are found here: Lohmander [5] and [9]. 
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Suggestions for future research

• Use the presented approach to optimization. Peter Lohmander is 
personally interested to cooperate with these projects:

• For alternative cases, with consideration of market structure, in particular
concerning coordination within OPEC and other market actors:

• Develop a complete optimization model for management of oil and other
relevant resources, using relevant price processes for crude oil and refined
products, local data for oil fields, oil extraction equipment, logistics, 
refining and other relevant data.

• Determine optimal investments in refining capacities.
• Determine optimal investments in pipelines, other infrastructure and oil

tankers.
• Determine optimal management of the oil industry.
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