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Optimal adaptive stochastic control of large scale energy production under the influence of market risk
Peter Lohmander

Abstract

The global energy market prices may be considered as stochastic processes. These prices may be
strongly influenced (partly controlled) by large producers and cartels, since production levels
influence the price level. Under such conditions, optimal dynamic production plans have to be
optimized using adaptive controls, derived via stochastic control theory and/or stochastic dynamic
programming. This paper presents alternative modelling options and a detailed analysis of a sample
problem. It is possible to use stochastic dynamic programming as a master problem in combination
with detailed multidimensional solutions to production and logistics problems for each state and
stage. This can be done in finite time and also in infinite time, via stochastic dynamic programming
in Markov chains with linear programming as a solution method. A sample problem is defined as a
stochastic dynamic programming problem for optimal adaptive control of energy production under
the influence of market risk and energy reserve constraints. General results concerning how the
optimal adaptive production decisions and expected resource values are affected by increasing risk
in the energy markets are reported. The main results are presented in connection to the present
modelling results. General conclusions are presented and suggestions for future research are given.

Keywords: Optimal adaptive control; Stochastic dynamic programming; Market adapted oil
production.
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f(t,s,m)= max (n(h;t, S, m) +Zr(n\m) f(t+1,s—h, n)j

heH (t,s,m)

V(t<T,s,m)




Inclusion of:
Linear and quadratic programming
sub problems

f(t,s,m= max max z(X,,., X,; h,t,s,m)+ > z(n|m) f (t+1,s—h,n)
S ,S,M st n

A X oty X, <Cy

\ a1 X+t X <Chyy
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The global energy market prices may be considered
as stochastic processes.

Since the stochastic properties of these prices are
of fundamental importance to optimal
management of
energy companies and to the economy in general,
we start by investigating them.



Source of oil prices:

Independent Statistics & Analysts

ei a U.S. Energy Information

Administration

(The following graphs will show annual averages.)

https://www.eia.gov/dnav/pet/pet pri spt s1 m.htm
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https://www.eia.gov/dnav/pet/pet_pri_spt_s1_m.htm

Inflation adjustments via CPI:

Table 24. Historical Consumer Price Index for All Urban
Consumers (CPI-U): U. S. city average, all
items-Continued

CPI Detailed Report
Data for January 2016

Editors
Malik Crawford

Jonathan Church _ s
Bradley. Al http://www.bls.gov/cpi/cpid1601.pdf
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Frequency distribution of the inflation adjusted (real)
spot price of crude oil (Brent) S/bbl. (Years 1987-
2015, Price level of 2015)

102 114 126
Price $/be, Upper boundarles of 12S intervals
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Frequency distribution of the inflation adjusted (real)
spot price of crude oil (Brent) S/bbl. (Years 1995-2015,
Price level of 2015)

LL liann

102 114 126
Prlce $/be, Upper boundarles of 12S intervals
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Frequency distribution of the inflation adjusted (real)

spot price of crude oil (Brent) S/bbl. (Years 2001-2015,

Price level of 2015)

102 114 126
Price $/be, Upper boundarles of 12S intervals
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'View History: @ Daily O Weekly O Monthly O Annual Download Data (XLS File)

Cushing, OK WTI Spot Price FOB X DOWNLOAD

Dollars per Barrel
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This series is available through the EIA open data API and can be downloaded to Excel or embedded as an interactive chart or map on your website.
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Notes: Probability values calculated using NYMEX market data forthe five trading days ending February 4, 2016.
Values not calculated for months with little trading in "close-to-the-money” options contracts.
Source: EIA Short-Term Energy Outlook, February 2016, and CME Group (http://wwav.cmegroup.com)
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What method is used by EIA to calculate the
probabilities?

e Option prices are used to determine the parameters of a probability
density function (and indirectly the probabilities of the oil price to be
higher or lower than different limits.)

e Of course, one could also use other methods. For instance, one could
look at the distribution of errors of price predictions in earlier
periods.
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On the next pages, some sections are copied from:

® www.ela.doe.gov
e.a Energy Information
| Administration Octobar 9000

BH Short-Term Energy Outlook Supplement:
Energy Price Volatility and Forecast Uncertainty?!
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* Confidence intervals for expected prices can be calculated using a variety
of alternative techniques, including estimates based on past price
volatility, statistical analysis of past forecast errors, or estimates of
parameter uncertainty in an econometric energy price forecasting
equation.

* Such backward-looking approaches, notwithstanding their merits, cannot
reflect changes in current market conditions and expectations that may
lead to greater or lesser uncertainty about the future at any given time.

 The STEO (Short-Term Energy Outlook) will instead focus on a measure of
uncertainty derived from the New York Mercantile Exchange (NYMEX) light
sweet crude oil options and natural gas options markets.
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* EIA will derive confidence intervals around expected futures prices
using the “implied volatilities” of these options. Implied volatility is
nothing more than a standard deviation for expected returns
embedded in the option’s price.

* If an option’s price is observed in the market, then a pricing model
can be “run backwards” to calculate the volatility embedded in that
price. This represents a market-cleared estimate of implied volatility,
i.e., a buyer and seller have agreed on the value of an option.

25



A particular type of random walk is assumed in the B-S-M and Black
models, known as a geometric Wiener process.

* In such a process, the likelihood of a 1-percent upward move in an
asset’s price is equal to the likelihood of a 1-percent downward move
over a very small time increment.

 The most an asset can lose is 100% of its value (i.e., the price
distribution is bounded at zero).

* This means returns would be normally distributed, with constant
volatility, while absolute prices would be log-normally distributed at
the option’s expiry.
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ln(f(r+dt),k /fr,k): At + O'kz‘/E



ln(f(m,,),k /f,,k)z U, dt + o,z dt , where

In[+]= Napierian logarithm, or natural logarithm

f,» = observed futures price at time = ¢ for the k"-nearby contract
Jvans = futures price at ¢ +dr for the k"-nearby contract ( dt > 0)

4, = mean logarithmic return

dt = infinitesimal change 1n time (A?, as At — 0)

L, dt = the “drift” term
o, = standard deviation of the k"™-nearby contract’s returns
z = standard normal random variable with mean = 0, var = 1

o, z\/dt =random-shock'’
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* The lognormal assumption for asset prices, which translates into a
normal assumption for log returns, has been a source of debate since
at least the early 1960s.

* Numerous researchers have noted the distribution of daily returns of
many assets is leptokurtic, i.e., “fat-tailed” and peaked.
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Frequency distribution of the inflation adjusted (real)
spot price of crude oil (Brent) S/bbl. (Years 1987-
2015, Price level of 2015)

102 114 126
Price $/be, Upper boundarles of 12S intervals
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Frequency

O = N W H U1 O

Frequency distribution of the inflation adjusted (real)
spot price of crude oil (Brent) S/bbl. (Years 1995-2015,
Price level of 2015)

LL liann

102 114 126
Prlce $/be, Upper boundarles of 12S intervals
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Option theory for uniform probability density

functions by Peter Lohmander
(Motivated by international prices of crude oil)

The parameters of a uniform price probability density function may be derived via European call option
prices. The rate of interest in the capital market is r and t is the time until the option expires.

=k (x— ) f (x)d

/ q \
‘ Probability density function

Option price e
of the oil price

= Expected value . _
of the option Strike Price Oil price

exp(-rt)
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y:kj(x—q)f(x)dx

m+h

y = kj(x )5 0%

m+h—q

y =Kk j x—dx
m+h—

y:% jqxdx

Option price = Expected
value of the option

We assume a uniform
probability

density function.
Expected price = m.
Maximum deviation,
up or down, is h.
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The price of the option is
a strictly decreasing
function of the strike
price.
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(m+h—qf

V=R
9X2k20ﬂ+h—q)4h—0n+h—qf-4
dh 16h?
Exzk8h0n+h—qylwm+h—qf

dh 16h°

gxzk(m+h—qﬂ3h—mn—4h+mﬂ

dh 16h’



dy k(m+h-q)(8h—4m-4h+4q)
dh 16h?

dy k(m+h-q)(h-m+q)
dh 4h?

(q<m+h):>(0<m+h—q)\>:>ﬂ>O
(-h+m<g)=(0<h-m+q)| dh

The option price is a strictly increasing function of the price
standard deviation, which is a strictly increasing function of h.
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Let us derive the value of h (which can give the
standard deviation etc.) from the option price!

k(m+’1—q)2 _Y Z:(m+h—q)2

Y= an K 4h

4hz:(m——h—q)2

4hz =m? +h” +g° + 2mh - 2mq — 2hq
m*+h* +g° +2mh-2mg-2hg-4hz =0

h? +2mh—2hg—-4hz+m*+9°-2mq=0
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h? +2(m—-q-2z)h+(m’+9° —2mq) =0

h* +Ph+Q =0
=53]




hl=22+q—m+\/(22+q—m)2—(m2+q2—2mq)

h, :22+q—m—\/(22 Fg—-m) —(m*+q° - 2mq)

hl:22+q—m+\/422+q2+m2+4zq—4zm—2qm—m2—q2+2mq

h, :22+q—m—\/4zz+q2+m2+4zq—4zm—2qm—m2—q2+2mq



hl:22+q—m+\/422+4zq—4zm

h, :22+q—m—\/422+4zq—4zm

h =2z+q-m+2/z(z+q—m)

h,=2z+q-m-2,/z(z+q-m)



h vh,?

PO 1 ( h? h
(mM=q)=z ijh X 2h[2 ] y h =4z

(m=q):(h1:22+2\/ﬁ=4y) h = 4z

(m:q):>(h2:22—2 z(z):O) h=0

(wrong)



This formula gives the “"spread parameter” h
of a uniform price probability density function.

h=2z+q-m+2/z(z+q—m)

rt m-h = lowest possible price
— _rt — ye m+h = highest possible price
e y = option price
g = strike price
m = expected price
r = rate of interest
t = time until expiration

Y
K
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https://www.eia.gov/forecasts/steo/uncertainty/pdf/uncertainty_past_wti.pdf

Short-Term Energy Outlook

West Texas Intermediate crude oil price
and NYMEX 95% confidence intervals

January 2015 — February 2016

Obs!

The following two graphs are derived via
lognormal price probability density function
assumptions.

/—
Comment by Peter Lohmander 3a)
y cla
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Historical WTI price and 95% NYMEX
Confidence Interval, January 2015
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Historical WTI price and 95% NYMEX

Confidence Interval, February 2016
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Please note that several alternative interpretations
of the graph on the next slide can be made.

Peter Lohmander
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Changes 1 Saudi Arabia crude o1l production can affect o1l prices

Changes in Saudi Arabia crude oil production and WTI crude oil prices

o on &
Iinteractive 7

million barrels per day (year-on-year) percent change (year-on-year)
25 100
2 —i 80
15 Tt 60
1 — 40
N Y N\ ) | it ]\ N
T Yl ; V 1Y 0
-0.5 — -20
-1 = -40
-15 -60

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
@ Saudi Arabia crude oil production — WTI percent change

Source: U.S. Energy Information Administration, Thomson Reuters.
Updated: Quarterly | Last Updated: 02/09/2016

https://www.eia.gov/finance/markets/supply-opec.cfm

~| Download Data in CSV

Oil markets often respond to changing expectations of future supply and demand. This chart shows how projections of
changes in Saudi Arabia crude oil production results in changes in WTI crude oil prices.
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Energy prices may be strongly influenced (partly controlled) by large
producers and cartels, since production levels influence the price level.

Under such conditions, optimal dynamic production plans have to be
optimized using adaptive controls, derived via stochastic control theory
and/or stochastic dynamic programming.

This paper presents alternative modelling options and a detailed analysis of a
sample problem.

It is possible to use stochastic dynamic programming as a master problem in
combination with detailed multidimensional solutions to production and
logistics problems for each state and stage.



This can be done in finite time and also in infinite time, via stochastic
dynamic programming in Markov chains with linear programming as a
solution method.



A sample problem is defined as a stochastic dynamic programming
problem for optimal adaptive control of energy production under the
influence of market risk and energy reserve constraints.



heH (t,s,m)

f(t,s,m)= max (n(h;t, S, M) +Zr(n\m) f(t+1,s—h, n)j

V(t<T,s,m)




f(T+Ls,m=0 WV(s,m)



DIM f£(101, 100, 9), hopt(101, 100, 9), d(101)

FOR t = 0 TO 101
d(t) = EXP(-.05 x t)
FOR s = 0 TO 100
FOR m = 1 TO 9
f(t, s, m) =0
hopt(t, s, m) = 0
NEXT m
NEXT s
NEXT t
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T =10
0<t<T
0<s<100
1<m<9

r(njm) = % v(m,n)

P(h,m)=30+(m-5)-h



FOR t = 10 TO 0 STEP -1
FOR s = 0 TO 100
FOR m =1 TO 9
FOR h = 0 TO s

fnext = 0
FOR 1 = 1 TO 9
fnext = fnext + 1 / 9 x f(t + 1, s — h, n)
NEXT n
fev = d(t) » (30 + (m - 5) — h) * h + fnext

IF fev > f(t, s, m) THEN hopt(t, s, m) = h
IF fev > f(t, s, m) THEN f(t, s, m) = fev

NEXT h
NEXT m
NEXT s
NEXT t
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General results concerning how the optimal adaptive production
decisions and expected resource values are affected by increasing risk
in the energy markets are reported.

The main results are presented in connection to the present modelling
results.



Table 1 — Optimal extraction table for t = 0.
We find that the optimal extraction level is an increasing function of the
market state and of the size of the remaining reserve.

Reserve

0O 10 20 30 40 50 0 70 80 90 100

Market

m= 1 0 1 3 4 4 5 6 6 7 8 9
m = 2 0 2 3 4 5 6 6 y/ 8 8 9
m = 3 0 2 4 5 5 6 7 1 8 9 10
m= 4 0 3 4 5 6 6 7 8 9 9 10
m= 5 0 3 4 5 6 7 8 8 9 10 10
m= 6 0 4 5 6 7 & 8 9 10 10 11
m= 7 0 4 S 6 7 8 9 9 10 11 11
m = 8 0 4 6 7 8 8 9 10 10 11 12
m=9 0 5 6 7 8 9 10 10 11 12 12
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Table 2 — Optimal expected present value table for t = 0.
The optimal expected present value is an increasing function of the
market state and of the size of the remaining reserve.

Market
m=1
m= 2
m= 3
m = 4
m =95
m= 6
m= 7
m = 8
m= 9

OO OO OOOO0oOOo

10

252
254
256
258
261
264
268
272
2.1

20

470
473
476
480
484
489
494
500
506

30

667
671
675
680
685
691
697
703
710

Reserve

40 50
846 1012
851 1017
856 1023
862 1029
868 1036
874 1043
881 1051
889 1059
897 1067

60

1163
1169
1175
1182
1190
1198
1206
1215
1224

70

1300
13077
1314
1321
1329
1338
1347
1.357
1367

80

1423
1430
1438
1446
1455
1464
1474
1484
1495

90

1532
1540
1549
1558
1567
15717
1588
1599
1610

100

1627
1636
1645
1655
1665
1676
1687
1699
1711
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Optimal decisions in period O and 5:

* Table 3 contains similar information as Table 1. However, in Table 3, we have
reached period 5.

* The ieneral tendencies are the same in period 0 and period 5, but in period 5
we should extract more of the resource than in period 0O, in case the market state
and the reserve level are the same.

. il'his is understandable, since in period 5, the number of remaining periods is
ower.

* Hence, the probability that we will be able to sell the resource at a much higher
price in the future is reduced.

* Furthermore, if we plan to strongly increase extraction in the near future, this will
reduce the price level very much.

* For these reasons, it is better to extract more of the resource in period 5, even if
the prices are not very good and even if we have not a very large remaining
resource.
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Table 3 — Optimal extraction table for t = 5.

Reserve

0O 10 20 30 40 50 60 70 80 90 100

Market

m=1 0 2 3 5° 6 @ 9 10 12 13 13
m = 2 0 # 3 5 6 8 9 11 12 13 13
m = 3 0 2 4 5 T 8 10 11 13 14 14
m = 4 0 3 4 6 7 9 10 12 13 14 14
m= 5 0 3 5 6 8 9 11 12 14 15 15
m = 6 0 4 5 2 8 10 11 12 14 15 15
M= 7 0 4 6 7 9 10 11 13 14 16 16
m = 8 0 4 6 T 9 10 12 13 15 16 16
m=9 0 5 6 8 O 11 12 14 15 17 17
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Optimal expected present values in period O
and 5:

* Table 4 corresponds to Table 2, but we have now reached period 5.

* The optimal expected present values are still increasing functions of the
market state and the size of the remaining reserve, but all values are
lower than the corresponding values in period 0.

 There are several reasons for this:
* Discounting during five years reduces all profits.

* Furthermore, since a lower number of periods remain, the number of
options to extract during very good market states has decreased.

* Finally, the remaining reserve has to be distributed over a lower number of
periods, which gives more negative effects on the price level.
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Table 4 — Optimal expected present value table for t = 5.

Reserve

0 10 20 30 40 50 60 70 80 90 100
Market
m= 1 0 196 363 506 628 726 801 853 883 893 893
m= 2 0 197 365 510 632 132 808 862 893 903 903
m = 3 0 199 368 514 6317 738 816 870 902 913 914
m= 4 0 201 371 519 643 744 823 879 912 924 925
m =5 0 203 375 523 649 751 831 888 923 936 936
m= 6 0 206 379 528 655 759 840 898 933 947 948
m = 0 209 383 534 661 766 848 908 944 959 961
m = 8 0 212 387 539 668 774 858 918 956 972 973
m=9 0 215 392 545 675 783 867 929 967 984 986
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! OptOil 160219
Peter Lohmander ;

model:

sets:

time/1..7/: year,d;
stock/1..11/:;
market/1..9/:;

sm(stock, market) :;
tsm(time, stock, market):
endsets

submodel initial:

@for (time(t) : year(t)=t-1;
d(t)=QRexp(-.05*(t-1))
) ;

@for(tsm(t,s,m) :
f(t,s,m) = 0;
hopt(t,s,m)=0;
prof(t,s,m)=0;
) ;

endsubmodel

£, hopt,

prof;
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submodel locl:
max = locobj;
locobj = dloc*p*h + fnext;

h = hloc;
p = 30+ (mloc-5)-h;
endsubmodel

submodel loc2:

max = locobj;

locobj = dloc* (pl*xl + p2*x2) + fnext;
x1+x2 <= hloc;

x1l <= 2;

x2 <=1;

pl = 30+ (mloc-5)-x1;

p2 = 26-0.5*x2;

endsubmodel



calc:
@set( 'TERSEO', 2);
@solve(initial) ;

TMAX = 7;
tloc = TMAX;

@while (tloc #GE#2:
tloc = tloc-1;
Qwrite (@newline (1)) ;

Qfor (stock(s) :
hmax = s-1;

@for (market (m) :
ml = m;
h=-1;

@while (h #LT# hmax:

h = h+l;

fnext = 0;

m2 = 0;

@while (m2 #LT# 9:
m2 =m2 + 1;

fnext = fnext + 1/9*f(tloc+l,

)

hloc = h;
mloc = m;
dloc = d(tloc);

@solve(loc2) ;
@ifc(locobj #GT# f(tloc,s,m):

f(tloc,s,m) = locobj;
hopt (tloc,s,m) = hloc) ;

The MAIN STDP LOOP

Since the format of this
section is very small,

the next pages include the
details in large format.

s-hl m2) ;
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calc:
@set( 'TERSEOQO', 2);
@solve (initial) ;

TMAX
tloc

7;
TMAX ;

@while (tloc #GE#2:
tloc = tloc-1;
Qwrite (@newline(1l)) ;

@for (stock (s) :
hmax = s-1;



@for (market (m) :
ml = m;
h=-1;

@while (h #LT# hmax:
h = h+l;



fnext 0,

m2 = 0;

Qwhile (m2 #LTH# 9:
m2 = m2 + 1;
fnext = fnext + 1/9*f(tloc+l, s-h, m2);
) ;



hloc = h;

mloc = m;

dloc = d(tloc);
@solve (loc2) ;

@ifc(locobj #GT# f£(tloc,s,m):

f(tloc,s,m) = locobj;
hopt (tloc,s,m) = hloc);
) ;



@write (@NEWLINE (1)) ;

@write ( 'OptOil by Peter Lohmander 2016-02-19',
@write ( @newline(2), 'Optimal expected present values', @Newline(2)) ;

@Qfor (time (t2) :

@write ( @newline(l), 'Year = ', year(t2),

@Qwrite ('Reserve =

")

Qwritefor (stock(s) :Qformat(s-1, '5.0f'));

Qwrite (Rnewline (2)) ;

@for (market (m) :
Qwrite ('Market = ',
Qwrite (' ")

Qwritefor (stock(s) :
Qwrite (Enewline (1)) ;
) ;

Qwrite (Qnewline (1)) ;

) ;

@Qformat(m, '3.0f')

@format(£(t2,s,m),

@Newline (1)) ;

@Newline (1)) ;

) ;

'5.0£'));
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@write ( @newline (2), 'Optimal extraction levels', @Newline(2)) ;
@Qfor (time (t2) :
@write (@newline(l), 'Year = ', year(t2), (@Newline(l));
Qwrite ('Reserve = "),
Qwritefor (stock(s) :Qformat(s-1, '5.0f'"));
Qwrite (@newline (2)) ;
@for (market (m) :
@Qwrite('Market = ', @format(m, '3.0f'));
Qwrite (' ")
@writefor (stock(s) : @format (hopt(t2,s,m), '5.0f'));
Qwrite (@newline (1)) ;
) ;
Qwrite (@newline (1)) ;

) ;

endcalc



CASE 1.

Price 1is stochastic and exogenous.
p = 30+(m-5)

p 1is not affected by the production level.
There 1is only one product: Crude o1l.
There are no production constraints.

Optimal decisions:
If the price 1is above the '"reservation price', you
instantly extract everything.

In the final period, you extract everything, 1irrespective
of the price level.
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Optimal expected present values
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CASE 2.

Price 1is stochastic and partly endogenous.
p = 30+(m-5)-h

There 1is only one product: Crude o1il.
There are no production constraints.

Optimal decisions:
The optimal extraction level 1is an increasing function of the
state of the market and of the size of the remaining reserve.

In the final period, you extract everything, irrespective of
the price level.
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Optimal extraction levels
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Optimal expected present values
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CASE 3.

submodel loc2:

max = locobj;

Tocobj = d*x(plxx1l + p2%xx2) + fnext;
x1+x2 <= h;

pl = 30+(m-5)-x1;

p2 = 26-0.0x%x2;

endsubmodel

There are two products, x1 (Crude oil) and x2 (refined).
pl is highly dependent on the stochastic market and very volume sensitive.
p2 is constant and insensitive to production volume.

There are no capacity limitations.
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Optimal decisions (in Case 3):

If the remaining reserve level 1is very high, you should
extract large quantitites and produce large volumes of x2.

If the remaining reserve level 1is low, you should use most
of it for x1, waiting for good levels of pl.

In the final period, you extract everything, irrespective
of price.
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Optimal extraction levels

Year = 0

10

Reserve

1
2
3
4

Market
Market
Market
Market
Market
Market
Market
Market
Market

5
6

7
8
9



Optimal expected present values
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CASE 4.

submodel loc2:

max = locobj;

Tocobj = d=(plxx1l + p2%x2) + fnext;
x1+x2 <= h;

pl = 30+(m-5)-x1;

p2 = 26-0.5%x2;

endsubmodel

There are two products, x1 (Crude oil) and x2 (refined).

pl is highly dependent on the stochastic market and very volume sensitive.
p2 is not stochastic but sensitive to production volume.

There are no capacity limitations.
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Optimal decisions (in Case 4):

If the remaining reserve level 1is very high, you should
produce rather high volumes of x2.

If the remaining reserve level 1is low, you should use
most of it for x1l, waiting for good levels of pl.

In the final period, you extract everything,
irrespective of price.
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Optimal extraction levels
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Optimal expected present values
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submodel loc2: CASE 5.
max = locobj;

Tocobj = dx(plxx1l + p2%xx2) + fnext;

x1+x2 <= h;

x1l <= 2;

x2 <= 1;

pl = 30+(m-5)-x1;

p2 = 26-0.5%x2;

endsubmodel

There are two products, x1 (Crude oil) and x2 (refined).

pl is highly dependent on the stochastic market and very volume
sensitive.

p2 is not stochastic but sensitive to production volume.

The production levels of of x1 and x2 have capacity constraints.
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Optimal decisions (in Case 5):

If the remaining reserve level 1is very high, you should produce
x2 at the capacity 1imit.

If the remaining reserve level is low, you should use most of it
for x1, waiting for good levels of pl.

In the final period, you extract as much as possible,
considering the capacity limitations, irrespective of price.

In periods close to the final period, the expected optimal

present values are strongly reduced by the production capacity
Timitations, 1n case the remaining reserve 1is large.
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Optimal extraction levels
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Optimal expected present values
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General conclusions

« Stochastic dynamic programming Is a fantastic method that can be used in many
highly relevant problems, in particular with stochastic market prices and adaptive
production decisions.

* A common opinion 1s however that the “curse of dimensionality” makes it
Impossible to handle relevant real world problems with this method. For this
reason, several attempts have been made to develop alternative approaches.

« In the light of this situation, the author suggests the use of stochastic dynamic
programming as a master problem combined with linear programming or
quadratic programming solutions to optimal decisions at each stage and state.

« This makes it possible to keep the real stochastic structure of the problem and to
optimize the relevant adaptive production level decisions.

At the same time, any level of detail can be handled in the many production and
logistics oriented decisions at lower levels.

* These approaches are found here: Lohmander [5] and [9].



Suggestions for future research

* Use the presented approach to optimization. Peter Lohmander is
personally interested to cooperate with these projects:

* For alternative cases, with consideration of market structure, in particular
concerning coordination within OPEC and other market actors:

* Develop a complete optimization model for management of oil and other
relevant resources, using relevant price processes for crude oil and refined
products, local data for oil fields, oil extraction equipment, logistics,
refining and other relevant data.

* Determine optimal investments in refining capacities.

. Detliermine optimal investments in pipelines, other infrastructure and oil
tankers.

* Determine optimal management of the oil industry.
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