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Abstract 

The analysis in this paper shows that the fundamental theory of the CO2 level in the atmosphere, under 

the influence of changing CO2 emissions, can be modeled as a first order linear differential equation 

with a forcing function, describing industrial emissions.  

Observations of the CO2 level at the Mauna Loa CO2 observatory and official statistics of global CO2 

emissions, from Edgar, the Joint Research Centre at the European Commission, are used to estimate 

all parameters of the forced CO2 differential equation. 

The estimated differential equation has a logical theoretical foundation and convincing statistical 

properties. It is used to reproduce the time path of the CO2 data from Mauna Loa, from year 1990 to 

2018, with very small errors. Furthermore, the differential equation shows that the global CO2 level, 

without emissions, has a stable equilibrium at 280 ppm. This value has earlier been reported by IPCC 

as the pre-industrial CO2 level. 

The differential function is applied to derive four dynamic cases of the global CO2 level, from the year 

2020 until 2100, conditional on four different strategies concerning the development of global CO2 

emissions: i. Emissions continue to increase according to the trend during 1990 – 2018., ii. Emissions 

stay for ever at the 2020 level., iii. Emissions are reduced with a linear trend to become zero year 

2100., iv. Emissions are reduced with a linear trend to become zero year 2050. In case i., the CO2 level 

year 2100 will be 688 ppm. In cases ii. and iii., the CO2 levels in 2100 will be 517 ppm and 389 

respectively. In case iv., the CO2 level in 2050 is 408 ppm and then rapidly falls. 
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Introduction 

The global warming and CO2 dynamics issue, for very good reasons, attracts considerable global 

interest. The climate of our planet is of key importance to all life. The author recommends the reader 

to study Ramade4 in detail for a deep understanding of many of the connected issues and theories.  

The first ambition is to understand the fundamental mechanisms of the dynamics of the CO2 level of 

the atmosphere under the influence of global emissions.  

We will investigate if it is possible to develop a theoretical mathematical model of the dynamics of 

CO2. Such a model should be consistent with fundamental scientific principles. Furthermore, it should 

be possible to use the model to reproduce historical time series of empirical data. If such a model can 

be developed, it should be possible to use it also for predictions. Then, the most important application 

is to investigate how the global CO2 level can be dynamically changed via different emissions 

strategies. 

 

Statistics of the 𝐂𝐎𝟐 level in the atmosphere and the global CO2 emissions  

The CO2 level of the atmosphere has been recorded since 1958, at the Mauna Loa observatory. See 

Tans and Keeling6. The statistical tables are well documented and freely available via the internet. In 

Figure 1., the annual mean values of CO2 are shown. The web link connected to the reference provides 

access to all observations via a text file with instructions. In several cases, transformations between 

different physical units are necessary. O'Hara3 includes the relevant conversion factors. 
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Figure 1. 

CO2 in the atmosphere, annual mean values, Mauna Loa, (ppm). Source: Tans and Keeling6. 

 

 

In Figure 2., we find observations of global CO2 emissions from fossil fuels combustion and processes. 

These data come from European Commission2. The observations from 1990, 2000, 2010 and 2018 

have been used in this analysis of this paper. There are two reasons for this:  

First, emission data were only collected with ten year intervals during the early years. Second, 

sufficiently long time intervals are needed if we want to be able to estimate the changes of CO2 in the 

atmosphere with sufficiently high precision.    

In the estimations of a differential equation, the following three periods will be used: 1990 – 2000, 

2000 – 2010 and 2010 – 2018. More details about these periods are found in Table 2. 
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Figure 2. 

Obs = Observations of global CO2 emissions from fossil fuels combustion and processes. Source: 

European Commission2. Approx = Linear approximation via the least squares method, by the author of 

this paper. Compare equation (47).  

Approx 21.672 0.57366( 1990)Year   . 0.984R  . 
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The emission forced differential equation of the global 𝐂𝐎𝟐 level 

  

The general theory of differential equations can be studied in Braun1.  

Let us first consider the following differential equation. We will soon discover that it has to be 

adjusted in order to become relevant to the CO2 problem.  

0

dx
x a

dt



   
(1) 

( )x x t is the CO2 level in the atmosphere as a function of time. 
dx

x
dt



  is the change per time unit, 

or the time derivative, of x . There are constant ”natural” emissions, from the oceans, volcanoes and 

other parts of the natural environment, greater than zero. 0 0a  . Hence, 
dx

x
dt



 would be strictly 

positive and x would increase over time, without bound, if nothing would stop that. 

However, earlier CO2 research has already shown that the CO2 level has been stable during very long 

periods of time. Compare Ramade4 and Solomon et al5. 

Let us assume that the oceans (and, to some degree, other parts of the natural environment) absorb a 

part of the CO2 in the atmosphere. Let us also assume that the absorbtion is proportional to the CO2 

level in the atmosphere, x . This is a very reasonable assumption since the probability that a CO2 

molecule touches the surface of the sea is proportional to the CO2 level in the atmosphere. Let the 

absorbtion be xa x . Then, we have this differential equation of global CO2:  

0 x

dx
x a a x

dt



    
 

(2) 

Is there an equilibrium? 

0 0x

dx
x a a x

dt



     
 

(3) 

Yes, there is one and only one equilbrium. 

00 0eq

x

a
x x x

a

  
     

 
 

 

(4) 

Is this equilibrium stable? Yes, if something disturbes x so that eqx x , then 0x


 , which means 

that  x  increases until eqx x . If eqx x , then 0x


 , and x  decreases until eqx x . 

According to earlier research, the pre-industrial equilibrium level of CO2 was 280 ppm (parts per 

million). Compare the IPCC report by Solomon et al5. In this paper, we will find that the derived 

model confirms this finding. In other words, we will confirm that.  

0 280eq

x

a
x

a


   

 

(5) 
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In order to determine the parameters of a function, it is necessary to have some variation in the data. In 

particular, when we want to determine the values of the parameters of the differential equation of x , 

we can not do this if eqx x all the time. In this respect, it is useful to observe that the industrial 

emissions of CO2 during the latest decades have created earlier not available variation in x . Let us 

regard global emissions of CO2, after the industrial revolution, ( )t , as a function of t. The emissions 

are added to the CO2 in the atmosphere. 

0 ( )xx a a x t


    
 

(6) 

Now, since we have access to empirical data for ,x 
 

 
 

in different time periods, we can estimate the 

parameters  0 , xa a via the ordinary least squares method (regression analysis) in the following way: 

0( ) ( ) ( )xy t x t a a x t


     
 

(7) 

 

Table 1. includes the transformations of the available atmospheric CO2 raw data to a time seriers of x


 

that will be used in the analysis. In a similar way, in Table 2., the global emission data is developed to 

time series data for  . 

 

Table 1. 

Atmospheric CO2 data. 

i  

(period) 

 t  

(year) 
t    

(ppm) 

ix  

(ppm) 

t  

(years) 
ix  

(ppm) 

ix  

(Gt CO2) 
i

x
x

t

 



 

(ppm per 

year) 

i

x
x

t

 



 

(Gt CO2 per 

year) 

 1990 354.39       

1   15.16 10 361.97 2824.9 1.516 11.831 

 2000 369.55       

2   20.35 10 379.725 2963.5 2.035 15.882 

 2010 389.90       

3   18.62 8 399.21 3115.6 2.3275 18.165 

 2018 408.52       

 

Definitions in Table 1.: 

t
 = CO2 in atmosphere, annual mean value of observations, Mauna Loa.  

ix = CO2 in atmosphere, calculated mean value. 

Gt denotes Giga tonnes and ppm denotes parts per million. 
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Table 2. 

Atmospheric CO2 data transformations. 

i  

(period) 

 t  

(year) 
t    

(Gt CO2)  

i    

(Gt CO2 per year)  

 

i  

(Gt CO2 per year)  

 

i  

(ppm per year)  

 

 1990 22.637    

1   24.119 12.288 1.5745 

 2000 25.601    

2   29.7185 13.8365 1.7729 

 2010 33.836    

3   35.8615 17.6965 2.2675 

 2018 37.887    

 

Definitions in Table 2.:  

t   = Global total CO2 emission, observation. 

i  = Global total CO2 emission, calculated mean value.  

i  = i ix


  

 

In different statistical sources and equations, the CO2 of the atmosphere is given in different units. 

Following the principles by O'Hara3, the following transformation rules have been applied:  

1 ppm (CO2) can be transformed to 2.13*3.664 = 7.80432 Gt CO2. 1 ppm by volume of atmosphere 

CO2 = 2.13 Gt C. 1 g C = 0.083 mole CO2 = 3.664 g CO2.  

Now, the data series developed in Table 1. and Table 2. are used to produce the regression data set 

found in Table 3.  

Table 3. 

Regression data. 

i  
ix  

(ppm) 

iy  

(Gt CO2 per year)  

1 361.97 -12.288 

2 379.725 -13.8365 

3 399.21 -17.6965 

 

Definitions in Table 3: 

i i i iy x 
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Below, a very high level of detail in the calculations has been selected. The motivation is the 

following: The CO2 dynamics and global warming issue is critical to the present global political 

debate. It is necessary that the reader can investigate and repeat all derivations without problems. 

We want to determine the parameters  0 , xa a in this function: 

0 xy a a x   (8) 

 

We minimize the sum of squares of the residuals: 

 
0

2

0
,

1

min
x

N

i x i
a a

i

Z y a a x


    
 

(9) 

These are the first order optimum conditions: 

  

  

0

10

0

1

2 ( 1) 0

2 ( ) 0

N

i x i

i

N

i x i i

ix

dZ
y a a x

da

dZ
y a a x x

da






    



     





 

 

 

 

(10) 

 

They are further developed: 

  

  

0

10

2

0

1

2 0

2 0

N

x i i

i

N

i x i i i

ix

dZ
a a x y

da

dZ
a x a x x y

da






   



    





 

 

 

 

(11) 

We also want to investigate if the derived solution gives a unique minimum:  

2

2

0

2 1 2 0
d Z

N
da

    
 

(12) 

2
2

2
2 0

x

d Z
x

da
   

 

(13) 

 

2 2

2

0 0

22 2

2

0

2 1 2

2 2

x

x x

d Z d Z

da da da x

x xd Z d Z

da da da

  
 
 

 

 

 

 

(14) 

 

  22

2
4 4

N x
N x x

x x
   


 

 
 

 

(15) 

  

(16) 
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22

24
x x

N
N N

  
        

 
 

  22 24N E x E x      
(17) 

 2 ( ) 0 0N Var x      (18) 

  

Hence, the second order conditions of a unique minimum are satisfied. The first order conditions give 

a unique minimum. The first order optimum conditions imply: 

 

     

     

0

2

0

i x i

i i x i i

N a x a y

x a x a x y

  


 

 

  
 

 

(19) 

 

The parameters can be determined from this simultaneous equation system:  

0

2

i i

xi i i i

aN x y

ax x x y

    
    

    

 
  

 
 

(20) 

 

Table 4. 

Parameter values. 

N  3 

ix  1140.905 

2

ix  434581.9806 

i ix y  -16766.57209 

iy  -43.821 

 

The point 0( , )xa a is determined via Cramers rule: 

2

0

2

85248.955
40.951

2081.723

i i

i i i

i

i i

y x

x y x
a

N x

x x

  

 
 


 

 

 

 

 

(21) 

  

2

304.118
0.14609

2081.723

i

i i i

x

i

i i

N y

x x y
a

N x

x x


   


 


 

 

 

 

 

(22) 
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If we express x


 in the unit Gt CO2 /year, and x  in the unit ppm, we have this equation: 

40.951 0.14609x x


   
 

(23) 
What is the equilibrium value of x , via the derived function, in case there are no emissions? 

0 0x eq

dx
x a a x

dt



     
 

(24) 

0 280.31 ( )eq

x

a
x ppm

a


   

 

(25) 

Note that this value confirms the ealier empirical finding by Solomon et al5. If we express x


 in the 

unit Gt CO2 /year, and x  in the unit Gt CO2, we get the following differential equation. Note that the 

coefficient of x has been divided by 2.13*3.664, namely by 7.80432  : 

40.951 0.0187191x x


   
(26) 

40.951
2187.66 ( )

0.0187191
eqx Gt


 


 
 

(27) 

 

 

Figure 3. 

Determination of the global CO2 differential equation via the empirical observations of CO2 from 

Mouna Loa and the empirical observations of global CO2 emissions. The estimated equilibrium value 

of CO2 is 280 ppm, in case the global emissions of CO2 is zero. This confirms the earlier findings. 

Compare Solomon et al5.  The estimated function is: 40.951 – 0.14609 * CO2 (ppm). The multiple 
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correlation coefficient R = 0.977. Since the number of observations is limited, more detailed 

regression statistics will not be given here. 

 

 

Determination of the differential equation of 𝐂𝐎𝟐 in the atmosphere under the influence of 

changing 𝐂𝐎𝟐 emissions  

 

Now, the complete differential equation will be determined, giving the dynamic development of the 

CO2 level in the amosphere as a function of the development of the global emissions.  

This is the differential equation in general form:  

0 ( )xx a a x t


    
 

(28) 
 

We will consider the special case of emissions that grow with a linear trend, since that is supported by 

the available empirical data. (Note that the forcing function could be generalized to almost any form, if 

considered relevant.)   

0 1( )t m m t    (29) 

 

The differential equation becomes: 

0 0 1xx a x a m m t


     
 

(30) 
 

Solution of the homogenous equation: 

0h x hx a x


   
 

(31) 
 

st

hx Ae  (32) 

 

st

hx sAe


  
(33) 

 

( ) 0x hs a x   (34) 

 

 0h xx s a    (35) 

 

( ) xa t

hx t Ae  (36) 

 

Determination of the particular solution: 
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0 1px k k t   (37) 

 

0 0 1p x px a x a m m t


     
 

(38) 
 

 1 0 1 0 0 1xk a k k t a m m t      (39) 

 

1 0 0 0

1 1

x

x

k a k a m

a k m

  


 
 

 

(40) 

 

  1
1 1 1x

x

m
a k m k

a


     

 

(41) 

 

  1 1
1 0 0 0 1 0 0 0x x

x x

m m
k a k a m k a k a m

a a

    
           

   
 

 

(42) 

 

1
0 0

0

x

x

m
a m

a
k

a

 
   
   

 

 

(43) 

 

Determination of 
0 1( )t m m t    

Now, in order to use the derived function for predictions, we estimate the parameters  0 1,m m . We 

follow the same procedure as in the earlier section of this paper. 

Table 5. 

Regression data. 

j  

 

Year t  
 

 ( )t   

(Gt CO2 per year)  

1 1990 0 22.637 

2 2000 10 25.601 

3 2010 20 33.836 

4 2018 28 37.887 

 

Definitions in Table 5: 

t = Year – 1990. 
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Table 6. 

Parameter values. 

N  4 

jt  58 

2

jt  1284 

j jt   1993.566 

j  119.961 

 

The parameters can be determined from this simultaneous equation system:  

0

2

1

j j

j j j j

N t m

t t tm





    
    

    

 
  

 
 

(44) 

 

The point
0 1( , )m m is determined via Cramers rule: 

 

2

0

2

38403.096
21.672

1772

j j

j j j

j

j j

t

t t
m

N t

t t




  

 
 


 

 

 

 

 

(45) 

 

1

2

1016.526
0.57366

1772

j

j j j

j

j j

N

t t
m

N t

t t




  


 


 

 

 

 

 

(46) 

 

(The multiple correlation coefficient: R = 0.984 ) 

 

( ) 21.672 0.57366t t    (47) 

 

1
1

0.57366
30.646

0.0187191x

m
k

a

 
  


 

 

(48) 
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1

0 0

0

40.951 21.672 30.646
1708.27

0.0187191

x

x

m
a m

a
k

a

 
   

     


 

 

 

(49) 

 

0.0187191( ) 1708.27 30.646tx t Ae t    (50) 

 

(0) 1708.27x A   (51) 

 

(0) 1708.27A x   (52) 

 

354.39 2.13 3.664 1708.27A     (53) 

 

1057.52A  (54) 

 

0.0187191( ) 1057.52 1708.27 30.646 ( )tx t e t Gt         (55) 

 

If the function is divided by (2.13*3.664), the unit becomes ppm. 

 
0.0187191( ) 135.50 218.89 3.927 ( )tx t e t ppm         (56) 

 

In Figure 4., we find that the estimated function can reproduce the CO2 observations from Mauna Loa 

extremely well. Most years, during the period 1990 to 2018, the deviations are less than 1 ppm.  
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Figure 4. 

Mauna Loa = CO2 observations from 1990 to 2018. Model = CO2 prediction model. The empirical 

CO2 observations from Mauna Loa, compare Figure 1., and the prediction according to the derived 

differential equation model are almost identical. The graph was derived with the following equation: 
0.0187191( ) 135.50 218.89 3.927 ( )tx t e t ppm   . 

 

Predictions into the future 

Now, the estimated differential equation will be used to predict the future development of the CO2 

level, conditional on the following four alternative global emission strategies: 

Cont: During the period 2020 to 2100, the emissions continue to increase according to the 

trend estimated during the period 1990 to 2018. 

Lev 2020: The emissions 2020 are estimated from the trend 1990 to 2018. Then, the emissions 

stay at that level until 2100. 

Stop 2100: The emissions 2020 are estimated from the trend 1990 to 2018. Then, the emissions are 

reduced with a constant amount each year, such that the emissions are zero in 2100. 

Stop 2050: The emissions 2020 are estimated from the trend 1990 to 2018. Then, the emissions are 

reduced with a constant amount each year, such that the emissions are zero in 2050. 

In Figure 5., we see the graphs of the four emission scenarios and in Table 7. we find more details 

about the four scenarios. 
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Table 7. 

Parameter values for predictions. 

Alternative Year when t=0 x(0)_ppm a0 ax m0 m1 

Cont 1990 354,39 40,951 -0,01872 21,672 0,57366 

Lev 2020 2020 413,96911 40,951 -0,01872 38,8818 0 

Stop 2100 2020 413,96911 40,951 -0,01872 38,8818 -0,48602 

Stop 2050 2020 413,96911 40,951 -0,01872 38,8818 -1,29606 

 

The general principles derived and described in the earlier sections of this paper have been used to 

derive the equations of the CO2 level that are consistent with the four different emission scenarios. The 

parameters are presented in Table 8., for the unit ppm, and in Table 9., for the unit Gt. 

Table 8. 

Parameter values for predictions. 

Alternative k0 (Gt) k1 (Gt) A (Gt) 

Cont 1708,271011 30,64570412 1057,501954 

Lev 2020 4264,777687 0 -1034,030282 

Stop 2100 5651,809577 -25,96398865 -2421,062173 

Stop 2050 7963,529394 -69,23730308 -4732,781989 

 

Table 9. 

Parameter values for predictions. 

Alternative k0 (ppm) k1 (ppm) A (ppm) 

Cont 218,8878738 3,926761604 135,5021262 

Lev 2020 546,4637133 0 -132,4946033 

Stop 2100 724,1898816 -3,326873918 -310,2207716 

Stop 2050 1020,400162 -8,871663781 -606,4310522 
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Results and discussion 

The developed model will now be used to investigate the dynamic effects of four different alternative 

scenarios for the future development of global CO2 emissions, during the time interval 2020 to 2100. 

In Figure 5., we find the four emission scenarios. The predictions of the future CO2 level, conditional 

on the different emission strategies, are found in Figure 6. The predictions function, (57) is used. 

Then, t  is defined according to the information in Table 7. and the parameter values 0 1, ,A k k
 from 

Table 9. are used.   

0.0187191

0 1( ) ( )tx t Ae k k t ppm  
      

(57) 

 

 

 

Figure 5. 

Four different alternative scenarios for the future development of global CO2 emissions, during the 

time interval 2020 to 2100. The emission level 2020 is estimated via the linear approximation based 

on data from the time interval 1990 to 2018. The scenarios are used to predict the future development 

of CO2 in the atmosphere. Compare Figure 6. Cont = The emissions continue to develop according to 

the trend during 1990 to 2018. Lev 2020 = The emissions stay, for ever, at the level of 2020.           

Stop 2100 = The emissions are reduced with the same amount each year, during the time interval 2020 

until 2100. Then, the total emission is zero. Stop 2050 = The emissions are reduced with the same 

amount each year, during the time interval 2020 until 2050. (Observation: The negative emissions 

after 2050 are technically possible but not necessarily optimal and relevant.) 
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Figure 6. 

Four different alternative scenarios for the future development of CO2 level in the atmosphere, during 

the time interval 2020 to 2100. The scenarios are conditional on the global emission scenarios found in 

Figure 5. The emission level 2020 is estimated via the linear approximation based on data from the 

time interval 1990 to 2018.  

Cont = The emissions continue to develop according to the trend during 1990 to 2018.  

Lev 2020 = The emissions stay, for ever, at the level of 2020.  

Stop 2100 = The emissions are reduced with the same amount each year, during the time interval 2020 

until 2100. Then, the total emission is zero. 

Stop 2050 = The emissions are reduced with the same amount each year, during the time interval 2020 

until 2050. After 2050, the net emission is strictly negative and follows the same trend as before 2050. 

(Observation: The negative emissions after 2050 contribute to the dramatic fall of the CO2 level after 

2050 in this scenario. If the emissions would be zero after 2050, the CO2 level would converge to the 

pre-industrial level of 280 ppm. Alternative scenarios may easily be constructed.) 
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Conclusions 

Now, it is possible to understand the fundamental mechanisms of the dynamics of the CO2 level of the 

atmosphere, under the influence of global emissions.  

A theoretical mathematical model of the dynamics of CO2 has been developed. This model is 

consistent with fundamental scientific principles. Furthermore, we can use the model to reproduce 

historical time series of empirical data. We can even use the model to calculate the pre-industrial level 

of CO2 and discover that the calculated equilibrium value is consistent with earlier research findings. 

The model can also be used for preditictions. We have investigated how the global CO2 level can be 

dynamically changed via different emissions strategies. Detailed predictions of possible future 

developments have been produced and described. 

The CO2 and global warming topic is central to the present global political agenda. It is necessary to 

create a fundamental understanding of the principles and methods that can be used to handle the 

problems and to stabilize our global climate. The model developed in this paper can hopefully make it 

possible for a large part of the human population to really understand how the CO2 dynamics and 

emissions are connected. Without this fundamental understanding, it is difficult to convince critical 

persons that large investments in emission reductions may be necessary in order to stabilize the global 

climate. 

The model developed in this paper should be possible to understand, investigate and to reproduce, in 

every detail by every person that has a PhD or masters degree in engineering, mathematics, 

mathematical statistics or mathematical economics. Earlier models presented on similar topics are not 

presented with all the details. Completeness and transparancy are necessary for complete 

understanding and acceptance.  

According to the Occams razor, a scientific model should not be more complicated than necessary. In 

this paper, a differential equation is developed that is only based on very fundamental principles from 

physical science and mathematics. Two highly reliable sources of empirical data have been used to 

estimate the parameters. In the analysis, we have seen that a first order differential equation with 

emission forcing has been able to explain the development of the dynamics of the CO2 level in the 

atmosphere, with very high precision. Furthermore, the function shows that the CO2 equilibrium level, 

before the industrial revolution, should be 280 ppm, which confirms earlier empirical research. 

According to the opinion of the author, it is hardly possible to develop a more simple scientific model 

that explains the CO2 dynamics in a better way. 

Finally, the author hopes that the new model will be used to optimize and control global emission 

reductions, in order to give our planet the optimal climate. 
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